[1] |
马文明. 丙烷脱氢制丙烯技术研究进展[J]. 现代化工, 2023, 43(5): 20-24, 30. |
[2] |
杨瑞云. 丙烷催化脱氢制丙烯技术研究进展[J]. 中国石油和化工标准与质量, 2023, 43(6): 164-166. |
[3] |
Hu, Z.P., Yang, D., Wang, Z., et al. (2019) State-of-the-Art Catalysts for Direct Dehydrogenation of Propane to Propylene. Chinese Journal of Catalysis, 40, 1233-1254. https://doi.org/10.1016/S1872-2067(19)63360-7 |
[4] |
Al-Ghamdi, S.A. and De Lasa, H.I. (2014) Pro-pylene Production via Propane Oxidative Dehydrogenation over VOx/γ- Al2O3 Catalyst. Fuel, 128, 120-140. https://doi.org/10.1016/j.fuel.2014.02.033 |
[5] |
Song, C., Park, H., Choi, W.C., et al. (2022) Initial Catalytic Be-havior of Chromium Oxide during Induction Period of fluidized Dehy-Drogenation of Propane. Chemical Engineering Journal, 440, Article ID: 135860. https://doi.org/10.1016/j.cej.2022.135860 |
[6] |
Sun, Y., Tao, L., You, T., et al. (2014) Effect of Sulfation on the Performance of Fe2O3/Al2O3 Catalyst in Catalytic Dehydrogenation of Propane to Propylene. Chemical Engineering Journal, 244, 145-151. https://doi.org/10.1016/j.cej.2014.01.047 |
[7] |
Karimipourfard, D., Kabiri, S. and Rahimpour, M.R. (2014) A Novel Integrated Thermally Double Coupled Configuration for Methane Steam Reforming, Methane Oxidation and Dehydro-genation of Propane. Journal of Natural Gas Science and Engineering, 21, 134-146. https://doi.org/10.1016/j.jngse.2014.06.018 |
[8] |
Saerens, S., Sabbe, M.K., Galvita, V.V., et al. (2017) The Positive Role of Hydrogen on the Dehydrogenation of Propane on Pt(111). ACS Catalysis, 7, 7495-7508. https://doi.org/10.1021/acscatal.7b01584 |
[9] |
Fattahi, M., Kazemeini, M., Khorasheh, F., et al. (2014) An Investi-gation of the Oxidative Dehydrogenation of Propane Kinetics over a Vanadium-Graphene Catalyst Aiming at Minimizing of the COx Species. Chemical Engineering Journal, 250, 14-24. https://doi.org/10.1016/j.cej.2014.04.002 |
[10] |
Grant, J.T., Carrero, C.A., Love, A.M., et al. (2015) Enhanced Two-Dimensional Dispersion of Group V Metal Oxides on Silica. ACS Catalysis, 5, 5787-5793. https://doi.org/10.1021/acscatal.5b01679 |
[11] |
Atanga, M.A., Rezaei, F., Jawad, A., et al. (2018) Oxidative Dehy-drogenation of Propane to Propylene with Carbon Dioxide. Applied Catalysis B: Environmental, 220, 429-445. https://doi.org/10.1016/j.apcatb.2017.08.052 |
[12] |
Xing, F., Nakaya, Y., Yasumura, S., et al. (2022) Ternary Plati-num-Cobalt-Indium Nanoalloy on Ceria as a Highly Efficient Catalyst for the Oxidative Dehydrogenation of Propane Using CO2. Nature Catalysis, 5, 55-65. https://doi.org/10.1038/s41929-021-00730-x |
[13] |
Nakaya, Y., Hirayama, J., Yamazoe, S., et al. (2020) Sin-gle-Atom Pt in Intermetallics as an Ultrastable and Selective Catalyst for Propane Dehydrogenation. Nature Communica-tions, 11, Article No. 2838. https://doi.org/10.1038/s41467-020-16693-9 |
[14] |
Sim, S., Gong, S., Bae, J., et al. (2017) Chromium Oxide Sup-ported on Zr Modified Alumina for Stable and Selective Propane Dehydrogenation in Oxygen Free Moving Bed Process. Molecular Catalysis, 436, 164-173. https://doi.org/10.1016/j.mcat.2017.04.022 |
[15] |
刘杰, 刘昌呈, 马爱增, 等. Pt系催化剂在丙烷脱氢反应中的研究进展[J]. 石油学报(石油加工), 2015(5): 1218-1231. |
[16] |
李修仪, 周金波, 黄剑锋, 等. 丙烷催化脱氢制丙烯Pt系催化剂研究进展[J]. 石油炼制与化工, 2019, 50(12): 102-108. |
[17] |
谢继阳, 王红琴, 安霓虹, 等. 丙烷脱氢制丙烯中铂基催化剂研究进展[J]. 贵金属, 2020, 41(1): 70-76, 84. |
[18] |
Xiong, H., Lin, S., Goetze, J., et al. (2017) Thermally Stable and Regenerable Platinum-Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Angewandte Chemie International Edition, 56, 8986-8991. https://doi.org/10.1002/anie.201701115 |
[19] |
Yang, M.L., Zhu, Y.A., Zhou, X.G., et al. (2012) First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts. ACS Catalysis, 2, 1247-1258. https://doi.org/10.1021/cs300031d |
[20] |
Kaichev, V.V., Chesalov, Y.A., Saraev, A.A., et al. (2019) A Mechanistic Study of Dehydrogenation of Propane over Vanadia-Titania Catalysts. The Journal of Physical Chemistry C, 123, 19668-19680. https://doi.org/10.1021/acs.jpcc.9b04991 |
[21] |
Zhang, F., Wu, R., Yue, Y., et al. (2011) Chromium Oxide Sup-ported on ZSM-5 as a Novel Efficient Catalyst for Dehydrogenation of Propane with CO2. Microporous and Mesopo-rous Materials, 145, 194-199. https://doi.org/10.1016/j.micromeso.2011.05.021 |
[22] |
Xie, Y., Hua, W., Yue, Y., et al. (2010) Dehydrogenation of Propane to Propylene over Ga2O3 Supported on Mesoporous HZSM‐5 in the Presence of CO2. Chinese Journal of Chemistry, 28, 1559-1564. https://doi.org/10.1002/cjoc.201090265 |
[23] |
De, M. and Kunzru, D. (2004) Oxidative Dehydrogenation of Propane on V2O5/ZrO2 Catalyst. Catalysis Letters, 96, 33-42. https://doi.org/10.1023/B:CATL.0000029526.50161.3e |
[24] |
Jibril, B.Y. (2004) Propane Oxidative Dehydrogena-tion over Chromium Oxide-Based Catalysts. Applied Catalysis A: General, 264, 193-202. https://doi.org/10.1016/j.apcata.2003.12.054 |
[25] |
Frey, F.E. and Huppke, W.F. (1933) Equilibrium Dehydrogena-tion of Ethane, Propane, and the Butanes. Industrial & Engineering Chemistry, 25, 54-59. https://doi.org/10.1021/ie50277a013 |
[26] |
Agafonov, Y.A., Gaidai, N.A. and Lapidus, A.L. (2014) Influence of the Preparation Conditions for Catalysts CrOx/ SiO2 on Their Efficiency in Propane Dehydrogenation in the Presence СО2. Russian Chemical Bulletin, 63, 381-388. https://doi.org/10.1007/s11172-014-0441-x |
[27] |
Jin, R., Easa, J., Tran, D.T., et al. (2020) Ru-Promoted CO2 Acti-vation for Oxidative Dehydrogenation of Propane over Chromium Oxide Catalyst. Catalysis Science & Technology, 10, 1769-1777. https://doi.org/10.1039/C9CY01990A |
[28] |
Wang, J., Song, Y.H., Liu, Z.T., et al. (2021) Active and Selective Nature of Supported CrOx for the Oxidative Dehydrogenation of Propane with Carbon Dioxide. Applied Catal-ysis B: Environmental, 297, Article ID: 120400. https://doi.org/10.1016/j.apcatb.2021.120400 |
[29] |
Takahara, I., et al. (1998) Promoting Effects of CO2 on Dehy-drogenation of Propane over a SiO2-Supported Cr2O3 Catalyst. Studies in Surface Science and Catalysis, 114, 419-422. https://doi.org/10.1016/S0167-2991(98)80785-4 |
[30] |
Kocoń, M., Michorczyk, P. and Ogonowski, J. (2005) Effect of Supports on Catalytic Activity of Chromium Oxide-Based Catalysts in the Dehydrogenation of Propane with CO2. Catalysis Letters, 101, 53-57. https://doi.org/10.1007/s10562-004-3749-6 |
[31] |
Zheng, B., Hua, W., Yue, Y., et al. (2005) Dehydrogenation of Propane to Propene over Different Polymorphs of Gallium Oxide. Journal of Catalysis, 232, 143-151. https://doi.org/10.1016/j.jcat.2005.03.001 |
[32] |
Michorczyk, P. (2003) Dehydrogenation of Propane to Propene over Gallium Oxide in the Presence of CO2. Applied Catalysis A: General, 251, 425-433. https://doi.org/10.1016/S0926-860X(03)00368-5 |
[33] |
Michorczyk, P., Kuśtrowski, P., Kolak, A., et al. (2013) Ordered Mesoporous Ga2O3 and Ga2O3-Al2O3 Prepared by Nanocasting as Effective Catalysts for Propane Dehydro-genation in the Presence of CO2. Catalysis Communications, 35, 95-100. https://doi.org/10.1016/j.catcom.2013.01.019 |
[34] |
Xu, B., Zheng, B., Hua, W., et al. (2006) Support Effect in De-hydrogenation of Propane in the Presence of CO2 over Supported Gallium Oxide Catalysts. Journal of Catalysis, 239, 470-477. https://doi.org/10.1016/j.jcat.2006.02.017 |
[35] |
Xiao, H., Zhang, J., Wang, P., et al. (2016) Dehydrogena-tion of Propane over a Hydrothermal-Synthesized Ga2O3-Al2O3 Catalyst in the Presence of Carbon Dioxide. Catalysis Science & Technology, 6, 5183-5195. https://doi.org/10.1039/C5CY02161H |
[36] |
Liu, Y., Zhang, G., Wang, J., et al. (2021) Promoting Propane Dehy-drogenation with CO2 over Ga2O3/SiO2 by Eliminating Ga-Hydrides. Chinese Journal of Catalysis, 42, 2225-2233. https://doi.org/10.1016/S1872-2067(21)63900-1 |
[37] |
Solymosi, F., Tolmacsov, P. and Kedves, K. (2003) CO2 Reforming of Propane over Supported Rh. Journal of Catalysis, 216, 377-385. https://doi.org/10.1016/S0021-9517(02)00071-4 |
[38] |
Pradhan, S., Upham, D.C., Metiu, H., et al. (2016) Partial Oxidation of Propane with CO2 on Ru Doped Catalysts. Catalysis Science & Technology, 6, 5483-5493. https://doi.org/10.1039/C6CY00011H |
[39] |
Nowicka, E., Reece, C., Althahban, S.M., et al. (2018) Elucidating the Role of CO2 in the Soft Oxidative Dehydrogenation of Propane over Ceria-Based Catalysts. ACS Catalysis, 8, 3454-3468. https://doi.org/10.1021/acscatal.7b03805 |
[40] |
Zhang, W., Wang, H., Jiang, J., et al. (2020) Size Dependence of Pt Catalysts for Propane Dehydrogenation: From Atomically Dispersed to Nanoparticles. ACS Catalysis, 10, 12932-12942. https://doi.org/10.1021/acscatal.0c03286 |
[41] |
Luo, W., Baaziz, W., Cao, Q., et al. (2017) Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Interfaces, 9, 34256-34268. https://doi.org/10.1021/acsami.7b10638 |
[42] |
Bian, K., Zhang, G., Zhu, J., et al. (2022) Promoting Propane Dehydrogenation with CO2 over the PtFe Bimetallic Catalyst by Eliminating the Non-Selective Fe(0) Phase. ACS Catalysis, 12, 6559-6569. https://doi.org/10.1021/acscatal.2c00649 |
[43] |
Wang, H., Zhang, X., Su, Z., et al. (2024) Dealuminated Beta Stabi-lized Bimetallic PtCo Nanoparticles for Oxidative Dehydrogenation of Propane with CO2. Fuel, 358, Article ID: 130248. https://doi.org/10.1016/j.fuel.2023.130248 |
[44] |
Mata-Martinez, A., Jimenez-Lam, S.A., Talavera-López, A., et al. (2018) The Effect of Sn Content in a Pt/KIT-6 Catalyst over Its Performance in the Dehydrogenation of Propane. Inter-national Journal of Chemical Reactor Engineering, 16, Article ID: 20170237. https://doi.org/10.1515/ijcre-2017-0237 |
[45] |
Wang, Y., Wang, J., Zhang, Y., et al. (2022) Revealing the Catalytic Role of Sn Dopant in CO2-Oxidative Dehydrogenation of Propane over Pt/Sn‐CeO2 Catalyst. ChemCatChem, 14, e202200982. https://doi.org/10.1002/cctc.202200982 |
[46] |
Yang, G.Q., Ren, X., Kondratenko, V.A., et al. (2023) Promotional Nature of Sn on Pt/CeO2 for the Oxidative Dehydrogenation of Propane with Carbon Dioxide. Nano Research, 16, 6237-6250. https://doi.org/10.1007/s12274-022-5316-0 |
[47] |
Zhai, P., Xie, Z., Huang, E., et al. (2023) CO2-Mediated Oxidative Dehydrogenation of Propane Enabled by Pt-Based Bimetallic Catalysts. Chem, 9, 3268-3285. https://doi.org/10.1016/j.chempr.2023.07.002 |
[48] |
Xing, F., Ma, J., Shimizu, K., et al. (2022) High-Entropy Inter-metallics on Ceria as Efficient Catalysts for the Oxidative Dehydrogenation of Propane Using CO2. Nature Communica-tions, 13, Article No. 5065. https://doi.org/10.1038/s41467-022-32842-8 |
[49] |
Reber, A.C. and Khanna, S.V. (2017) Superatoms: Electronic and Geometric Effects on Reactivity. Accounts of Chemical Research, 50, 255-263. https://doi.org/10.1021/acs.accounts.6b00464 |
[50] |
Sun, Q., Wang, N., Fan, Q., et al. (2020) Subnanometer Bime-tallic Platinum-Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie International Edition, 59, 19450-19459. https://doi.org/10.1002/anie.202003349 |
[51] |
Poths, P., Li, G., Masubuchi, T., et al. (2023) Got Coke? Self-Limiting Poisoning Makes an Ultra Stable and Selective Sub-Nano Cluster Catalyst. ACS Catalysis, 13, 1533-1544. https://doi.org/10.1021/acscatal.2c05634 |
[52] |
Rong, H., Ji, S., Zhang, J., et al. (2020) Synthetic Strate-gies of Supported Atomic Clusters for Heterogeneous Catalysis. Nature Communications, 11, Article No. 5884. https://doi.org/10.1038/s41467-020-19571-6 |
[53] |
Álvarez, A., Borges, M., Corral-Pérez, J.J., et al. (2017) CO2 Activation over Catalytic Surfaces. ChemPhysChem, 18, 3135-3141. https://doi.org/10.1002/cphc.201700782 |
[54] |
Austin, N., Butina, B. and Mpourmpakis, G. (2016) CO2 Activation on Bimetallic CuNi Nanoparticles. Progress in Natural Science: Materials International, 26, 487-492. https://doi.org/10.1016/j.pnsc.2016.08.007 |
[55] |
Le, T.A., Kang, J.K. and Park, E.D. (2018) CO and CO2 Methana-tion over Ni/SiC and Ni/SiO2 Catalysts. Topics in Catalysis, 61, 1537-1544. https://doi.org/10.1007/s11244-018-0965-7 |
[56] |
Pakhare, D. and Spivey, J. (2014) A Review of Dry (CO2) Re-forming of Methane over Noble Metal Catalysts. Chemical Society Reviews, 43, 7813-7837. https://doi.org/10.1039/C3CS60395D |
[57] |
Dong, J. (2022) Insights into the CeO2 Facet-Depended Performance of Propane Oxidation over Pt-CeO2 Catalysts. Journal of Catalysis, 407, 174-185. https://doi.org/10.1016/j.jcat.2022.01.026 |
[58] |
Gao, X. (2012) Structural Effects of Cerium Oxides on Their Ther-mal Stability and Catalytic Performance in Propane Oxidation Dehydrogenation. Chinese Journal of Catalysis, 33, 1069-1074. https://doi.org/10.1016/S1872-2067(11)60404-X |
[59] |
Sun, G., Zhao, Z.J., Mu, R., et al. (2018) Breaking the Scaling Relationship via Thermally Stable Pt/Cu Single Atom Alloys for Catalytic Dehydrogenation. Nature Communi-cations, 9, Article No. 4454. https://doi.org/10.1038/s41467-018-06967-8 |
[60] |
Xiao, L., Shan, Y.L., Sui, Z.J., et al. (2020) Beyond the Reverse Horiuti-Polanyi Mechanism in Propane Dehydrogenation over Pt Catalysts. ACS Catalysis, 10, 14887-14902. https://doi.org/10.1021/acscatal.0c03381 |
[61] |
Jiang, F., Zeng, L., Li, S.R., et al. (2014) Propane Dehydrogenation over Pt/TiO2-Al2O3 Catalysts. ACS Catalysis, 5, 438-447. |
[62] |
Sun, X., Liu, M., Huang, Y., et al. (2019) Electronic In-teraction between Single Pt Atom and Vacancies on Boron Nitride Nanosheets and Its Influence on the Catalytic Perfor-mance in the Direct Dehydrogenation of Propane. Chinese Journal of Catalysis, 40, 819-825. https://doi.org/10.1016/S1872-2067(18)63196-1 |
[63] |
Furukawa, S. and Komatsu, T. (2017) Intermetallic Com-pounds: Promising Inorganic Materials for Well-Structured and Electronically Modified Reaction Environments for Effi-cient Catalysis. ACS Catalysis, 7, 735-765. https://doi.org/10.1021/acscatal.6b02603 |
[64] |
Xing, F., Jeon, J., Toyao, T., et al. (2019) A Cu-Pd Single-Atom Alloy Catalyst for Highly Efficient NO Reduction. Chemical Science, 10, 8292-8298. https://doi.org/10.1039/C9SC03172C |
[65] |
Gomez, E., Kattel, S., Yan, B., et al. (2018) Combining CO2 Reduction with Propane Oxidative Dehydrogenation over Bimetallic Catalysts. Nature Communications, 9, Article No. 1398. https://doi.org/10.1038/s41467-018-03793-w |
[66] |
Gomez, E., Xie, X.H. and Chen, J.G. (2019) The Effects of Bi-metallic Interactions for CO2-Assisted Oxidative Dehydrogenation and Dry Reforming of Propane. AIChE Journal, 65, e16670. https://doi.org/10.1002/aic.16670 |
[67] |
Guo, M., Liu, X. and Amorelli, A. (2019) Activation of Small Molecules over Praseodymium-Doped Ceria. Chinese Journal of Catalysis, 40, 1800-1809. https://doi.org/10.1016/S1872-2067(19)63369-3 |
[68] |
Nawaz, Z., Tang, X., Wang, Y., et al. (2010) Parametric Characterization and Influence of Tin on the Performance of Pt-Sn/SAPO-34 Catalyst for Selective Propane Dehydro-genation to Propylene. Industrial & Engineering Chemistry Research, 49, 1274-1280. https://doi.org/10.1021/ie901465s |
[69] |
Zhang, Y., Zhou, Y., Qiu, A., et al. (2006) Propane Dehydrogenation on PtSn/ZSM-5 Catalyst: Effect of Tin as a Promoter. Catalysis Communications, 7, 860-866. https://doi.org/10.1016/j.catcom.2006.03.016 |
[70] |
Xing, F.L., Ma, J., et al. (2022) High-Entropy Intermetallics on Ceria as Efficient Catalysts for the Oxidative Dehydrogenation of Propane Using CO2. Nature Communications, 13, Ar-ticle No. 5065. https://doi.org/10.1038/s41467-022-32842-8 |