[1] |
Christie, G.H. and Kenner, J. (1922) The Molecular Configurations of Polynuclear Aromatic Compounds. Journal of the Chemical Society, Transactions, 121, 614-620. https://doi.org/10.1039/CT9222100614 |
[2] |
Williams, D.H. and Bardsley, B. (1999) The Vancomycin Group of Antibiotics and the Fight against Resistant Bacteria. Angewandte Chemie, 111, 1264-1286. https://doi.org/10.1002/(SICI)1521-3757(19990503)111:9<1264::AID-ANGE1264>3.3.CO;2-V |
[3] |
Hubbard, B.K. and Walsh, C.T. (2003) Vancomycin Assembly: Nature’s Way. Angewandte Chemie, 115, 752-789. https://doi.org/10.1002/ange.200390171 |
[4] |
Bringmann, G., et al. (2005) Atroposelective Synthesis of Axially Chiral Biaryl Compounds. Angewandte Chemie International Edition, 44, 5384-5427. https://doi.org/10.1002/anie.200462661 |
[5] |
Kozlowski, M.C., Morgan, B.J. and Linton, E.C. (2009) Total Synthesis of Chiral Biaryl Natural Products by Asymmetric Biaryl Coupling. Chemical Society Reviews, 38, 3193-3207. https://doi.org/10.1039/b821092f |
[6] |
Nicolaou, K.C., Boddy, C.N.C., Brase, S. and Winssinger, N. (1999) Chemistry, Biology, and Medicine of the Glycopeptide Antibiotics. Angewandte Chemie, 111, 2230-2287. https://doi.org/10.1002/(SICI)1521-3757(19990802)111:15<2230::AID-ANGE2230>3.3.CO;2-M |
[7] |
Hyde, J.F. and Adams, R. (1928) Study of the Possible Isomerism of Certain Analogs of Resolvable Diphenyl Compounds. Journal of the American Chemical Society, 50, 2499-2506. https://doi.org/10.1021/ja01396a027 |
[8] |
Maxwell, R.W. and Adams, R. (1930) Study of the Possible Isomerism of Certain Analogs of Resolvable Diphenyl Compounds. VII. Journal of the American Chemical Society, 52, 2959-2972. https://doi.org/10.1021/ja01370a059 |
[9] |
Mills, W.H. and Dazeley, G.H. (1939) Molecular Dissymmetry Due to Restricted Rotation in the Benzene Series: An Optically Active Ethylenic Derivative. Journal of the Chemical Society, 460-463. https://doi.org/10.1039/jr9390000460 |
[10] |
Adams, R., Anderson, A.W. and Miller, M.W. (1941) Restricted Rotation in Aryl Olefins. II. Preparation and Resolution of Certain β-Chloro-β-(2,4,6-trimethyl- and 2,4,6-triethyl-3-bromophenyl)-acrylic Acids. Journal of the American Chemical Society, 63, 1589-1593. https://doi.org/10.1021/ja01851a028 |
[11] |
Adams, R. and Binder, L.O. (1941) Restricted Rotation in Aryl Olefins. III. Preparation and Resolution of β-Chloro-β-(2-methyl-1-naphthyl)-acrylic Acids. Journal of the American Chemical Society, 63, 2773-2776. https://doi.org/10.1021/ja01855a079 |
[12] |
Zheng, S.C., Wu, S., Zhou, Q., Chung, L.W., Ye, L. and Tan, B. (2017) Organocatalytic Atroposelective Synthesis of Axially Chiral Styrenes. Nature Communications, 8, Article No. 15238. https://doi.org/10.1038/ncomms15238 |
[13] |
Li, D., Tan, Y., Peng, L., Li, S., Zhang, N., Liu, Y. and Yan, H. (2018) Asymmetric Mannich Reaction and Construction of Axially Chiral Sulfone-Containing Styrenes in One Pot from α-Amido Sulfones Based on the Waste-Reuse Strategy. Organic Letters, 20, 4959-4963. https://doi.org/10.1021/acs.orglett.8b02087 |
[14] |
Li, Q.Z., Lian, P.F., Tan, F.X., Zhu, G.D., Chen, C., Hao, Y., Jiang, W., Wang, X.H., Zhou, J. and Zhang, S.Y. (2020) Organocatalytic Enantioselective Construction of Heterocycle-Substituted Styrenes with Chiral Atropisomerism. Organic Letters, 22, 2448-2453. https://doi.org/10.1021/acs.orglett.0c00659 |
[15] |
Wang, Y.B., Yu, P., Zhou, Z.P., Zhang, J., Wang, J., Luo, S.H., Gu, Q.S., Houk, K.N. and Tan, B. (2019) Asymmetric Construction of Axially Chiral 2-Arylpyrroles by Chirality Transfer of Atropisomeric Alkenes. Nature Catalysis, 2, 504-513. https://doi.org/10.1002/ange.201907470 |
[16] |
Doria, F., Percivalle, C. and Freccero, M. (2012) Vinylidene-Quinone Methides, Photochemical Generation and β-Silicon Effect on Reactivity. The Journal of Organic Chemistry, 77, 3615-3619. https://doi.org/10.1021/jo300115f |
[17] |
Tan, Y., Jia, S., Hu, F., Liu, Y., Peng, L., Li, D. and Yan, H. (2018) Enantioselective Construction of Vicinal Diaxial Styrenes and Multiaxis System via Organocatalysis. Journal of the American Chemical Society, 140, 16893-16898. https://doi.org/10.1021/jacs.8b09893 |
[18] |
Wu, Q.M., Zhang, Q., Yin, S.X., Lin, A.J., Gao, S. and Yao, H.Q. (2023) Atroposelective Synthesis of Axially Chiral Styrenes by Platinum-Catalyzed Stereoselective Hydrosilylation of Internal Alkynes. Angewandte Chemie International Edition, 62, 5518-5525. https://doi.org/10.1002/anie.202305518 |
[19] |
Song, H., Li, Y., Yao, Q.-J., Jin, L., Liu, L., Liu, Y.-H. and Shi, B.-F. (2020) Synthesis of Axially Chiral Styrenes through Pd-Catalyzed Asymmetric C-H Olefination Enabled by an Amino Amide Transient Directing Group. Angewandte Chemie International Edition, 59, 6576-6580. https://doi.org/10.1002/anie.201915949 |
[20] |
Jin, L., Yao, Q.J., Xie, P.P., Li, Y., Zhan, B.B., Han, Y.Q., Hong, X. and Shi, B.F. (2020) Atroposelective Synthesis of Axially Chiral Styrenes via an Asymmetric C-H Functionalization Strategy. Chem, 6, 497-511. https://doi.org/10.1016/j.chempr.2019.12.011 |
[21] |
Yang, C., Wu, T.R., Li, Y., Wu, B.B., Jin, R.X., Hu, D.D., Li, Y.B., Bian, K.J. and Wang, X.S. (2021) Facile Synthesis of Axially Chiral Styrene-Type Carboxylic Acids via Palladium-Catalyzed Asymmetric C-H Activation. Chemical Science, 12, 3726-3732. https://doi.org/10.1039/D0SC06661C |
[22] |
Yang, C., Li, F., Wu, T.R., Cui, R., Wu, B.B., Jin, R.X., Li, Y. and Wang, X.S. (2021) Development of Axially Chiral Styrene-Type Carboxylic Acid Ligands via Palladium-Catalyzed Asymmetric C-H Alkynylation. Organic Letters, 23, 8132-8137. https://doi.org/10.1021/acs.orglett.1c02692 |
[23] |
Yang, Y., Liu, H., Liu, X., Liu, T., Zhu, Y., Zhang, A., Wang, T., Hua, Y., Wang, M., Mao, G. and Liu, L. (2019) Asymmetric Synthesis of Axial Chiral Vinylarenes Fearturing Oxindole Moiety via Tandem Carbopalladation/C-H Olefination. Chinese Journal of Organic Chemistry, 39, 1655-1664. https://doi.org/10.6023/cjoc201903050 |
[24] |
Feng, J., Li, B., He, Y. and Gu, Z. (2016) Enantioselective Synthesis of Atropisomeric Vinyl Arene Compounds by Palladium Catalysis: A Carbene Strategy. Angewandte Chemie International Edition, 55, 2186-2190. https://doi.org/10.1002/anie.201509571 |
[25] |
Wang, J., Qi, X., Min, X.-L., Yi, W., Liu, P. and He, Y. (2021) Tandem Iridium Catalysis as a General Strategy for Atroposelective Construction of Axially Chiral Styrenes. Journal of the American Chemical Society, 143, 10686-10694. https://doi.org/10.1021/jacs.1c04400 |
[26] |
Auld, D. and Heller, H.G. (1967) The Reaction of Phenylmagnesium Bromide with 2-Benzoyl-1-Indanone and Its Enol Methyl Ether. Journal of the Chemical Society C: Organic, 60, 680-681. https://doi.org/10.1039/j39670000680 |
[27] |
Kumar, P., et al. (2021) Catalytic Enantioselective Synthesis of Axially Chiral Diarylmethylidene Indanones. Organic Letters, 23, 909-4914. https://doi.org/10.1021/acs.orglett.1c01671 |
[28] |
Lightfoot, A.P., Twiddle, S.J.R. and Whiting, A. (2005) A Stereoselective Synthesis of 1,6-Diphenyl-1,3,5-hexatrienes Utilising 4,4,6-Trimethyl-2-vinyl-1,3,2-dioxaborinane as a Two-Carbon Alkenyl Building Block. Organic & Biomolecular Chemistry, 3, 3167-3172. https://doi.org/10.1039/b507900d |
[29] |
Pan, C., Zhu, Z., Zhang, M. and Gu, Z. (2017) Enhanced Reactivity by Torsional Strain of Cyclic Diaryliodonium in Cu-Catalyzed Enantioselective Ring-Opening Reaction. Angewandte Chemie International Edition, 56, 4777-4781. |
[30] |
Kumar, P., Shirke, R.P., Yadav, S. and Ramasastry, S.S.V. (2021) Synthesis of Chiral Cyclopentenones. Organic Letters, 23, 4909-4914. https://doi.org/10.1021/acs.orglett.1c01671 |
[31] |
Yin, J., Rainka, M.P., Zhang, X.-X. and Buchwald, S.L. (2002) A Highly Active Suzuki Catalyst for the Synthesis of Sterically Hindered Biaryls: Novel Ligand Coordination. Journal of the American Chemical Society, 124, 1162-1163. https://doi.org/10.1021/ja017082r |
[32] |
Qiu, S.Q., et al. (2022) Asymmetric Construction of an Aryl-Alkene Axis by Palladium-Catalyzed Suzuki-Miyaura Coupling Reaction. Angewandte Chemie International Edition, 61, e202211211. https://doi.org/10.1002/anie.202211211 |