[1] |
周剑, 李强, 周波, 等. 夏季持续高温天气特色淡水鱼养殖应对策略[J]. 四川农业科技, 2023(2): 66-69. |
[2] |
关长涛, 王琳, 徐永江. 我国海水鱼类养殖产业现状与未来绿色高质量发展思考(上) [J]. 科学养鱼, 2020(7): 1-3. |
[3] |
Schmidtko, S., Stramma, L. and Visbeck, M. (2017) Decline in Global Oceanic Oxygen Content during the Past Five Decades. Nature, 542, 335-339. https://doi.org/10.1038/nature21399 |
[4] |
Jassby, A.D., et al. (2002) “Book-Review” Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Limnology and Oceanography, 47, 1269. |
[5] |
Thomas, Y., Flye-Sainte-Marie, J., Chabot, D., et al. (2018) Effects of Hypoxia on Metabolic Functions in Marine Organisms: Observed Patterns and Modelling Assumptions within the Context of Dynamic Energy Budget (DEB) Theory. Journal of Sea Research, 143, 231-242. https://doi.org/10.1016/j.seares.2018.05.001 |
[6] |
Liu, X.Q., Li, N., Feng, C.X., et al. (2019) Lethal Effect of Total Dissolved Gas-Supersaturated Water with Suspended Sediment on River Sturgeon (Acipenser dabryanus). Scientific Reports, 9, Article No. 13373. https://doi.org/10.1038/s41598-019-49800-y |
[7] |
Abdel-Tawwab, M., Monier, M.N., et al. (2019) Fish Response to Hypoxia Stress: Growth, Physiological, and Immunological Biomarkers. Fish Physiology and Biochemistry, 45, 997-1013. https://doi.org/10.1007/s10695-019-00614-9 |
[8] |
Vaquer-Sunyer, R. and Duarte, C.M. (2008) Thresholds of Hypoxia for Marine Biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 105, 15452-15457. https://doi.org/10.1073/pnas.0803833105 |
[9] |
Rosenberg, R., Hellman, B. and Johansson, B. (1991) Hypoxic Tolerance of Marine Benthic Fauna. Marine Ecology Progress Series, 79, 127-131. https://doi.org/10.3354/meps079127 |
[10] |
Xiao, W.H. (2015) The Hypoxia Signaling Pathway and Hypoxic Adaptation in Fishes. Science China (Life Sciences), 58, 148-155. https://doi.org/10.1007/s11427-015-4801-z |
[11] |
赵永丽. 花斑裸鲤低氧胁迫转录组学及其主要差异基因表达调控研究[D]: [硕士学位论文]. 西宁: 青海大学, 2018. |
[12] |
王维政, 曾泽乾, 黄建盛, 等. 低氧胁迫对军曹鱼幼鱼抗氧化、免疫能力及能量代谢的影响[J]. 广东海洋大学学报, 2020, 40(5): 12-18. |
[13] |
Chen, F.J., Ling, X.D., et al. (2022) Hypoxia-Induced Oxidative Stress and Apoptosis in Gills of Scaleless Carp (Gymnocypris przewalskii). Fish Physiology and Biochemistry, 48, 911-924. https://doi.org/10.1007/s10695-022-01091-3 |
[14] |
Wu, R.S.S. (2002) Hypoxia: From Molecular Responses to Ecosystem Responses. Marine Pollution Bulletin, 45, 35-45. https://doi.org/10.1016/S0025-326X(02)00061-9 |
[15] |
Shang, F.Q., Lu, Y., et al. (2022) Transcriptome Analysis Identifies Key Metabolic Changes in the Brain of Takifugu rubripes in Response to Chronic Hypoxia. Genes, 13, Article No. 1347. https://doi.org/10.3390/genes13081347 |
[16] |
da Cruz, A.L., da Silva, H.R., et al. (2013) Air-Breathing Behavior and Physiological Responses to Hypoxia and Air Exposure in the Air-Breathing Loricariid Fish, Pterygoplichthys Anisitsi. Fish Physiology and Biochemistry, 39, 243-256. https://doi.org/10.1007/s10695-012-9695-0 |
[17] |
Kramer, D.L. (1987) Dissolved Oxygen and Fish Behavior. Environmental Biology of Fishes, 18, 81-92. https://doi.org/10.1007/BF00002597 |
[18] |
赵文文, 曹振东, 付世建. 溶氧水平对鳊鱼、中华倒刺鲃幼鱼游泳能力的影响[J]. 水生生物学报, 2013, 37(2): 314-320. |
[19] |
Lefrançois, C., Shingles, A. and Domenici, P. (2005) The Effect of Hypoxia on Locomotor Performance and Behaviour during Escape in Liza aurata. Journal of Fish Biology, 67, 1711-1729. https://doi.org/10.1111/j.1095-8649.2005.00884.x |
[20] |
Sánchez-García, M.A., Zottoli, S.J. and Roberson, L.M. (2019) Hypoxia Has a Lasting Effect on Fast-Startle Behavior of the Tropical Fish Haemulon plumieri. The Biological Bulletin, 237, 48-62. https://doi.org/10.1086/704337 |
[21] |
Bowyer, J.N., Booth, M.A., Qin, J.G., et al. (2014) Temperature and Dissolved Oxygen Influence Growth and Digestive Enzyme Activities of Yellowtail Kingfish Seriola lalandi (Valenciennes, 1833). Aquaculture Research, 45, 2010-2020. https://doi.org/10.1111/are.12146 |
[22] |
Magnoni, L.J., Eding, E., Leguen, I., et al. (2018) Hypoxia, but Not an Electrolyte-Imbalanced Diet, Reduces Feed Intake, Growth and Oxygen Consumption in Rainbow Trout (Oncorhynchus mykiss). Scientific Reports, 8, Article No. 4965. https://doi.org/10.1038/s41598-018-23352-z |
[23] |
Lv, H.-B., Ma, Y.-Y., Hu, C.-T., et al. (2020) The Individual and Combined Effects of Hypoxia and High-Fat Diet Feeding on Nutrient Composition and Flesh Quality in Nile Tilapia (Oreochromis niloticus). Food Chemistry, 343, Article ID: 128479. |
[24] |
Remen, M., Oppedal, F., Torgersen, T., et al. (2011) Effects of Cyclic Environmental Hypoxia on Physiology and Feed Intake of Post-Smolt Atlantic Salmon: Initial Responses and Acclimation. Aquaculture, 326-329, 148-155. https://doi.org/10.1016/j.aquaculture.2011.11.036 |
[25] |
Domenici, P., Ferrari, R.S., Steffensen, J.F. and Batty, R.S. (2002) The Effect of Progressive Hypoxia on School Structure and Dynamics in Atlantic Herring Clupea harengus. Proceedings Biological Sciences, 269, 2103-2111. https://doi.org/10.1098/rspb.2002.2107 |
[26] |
Erickstad, M., Hale, L.A., Chalasani, S.H. and Groisman, A. (2015) A Microfluidic System for Studying the Behavior of Zebrafish Larvae under Acute Hypoxia. Lab on a Chip, 15, 857-866. https://doi.org/10.1039/C4LC00717D |
[27] |
Martin, K.L.M. (1995) Time and Tide Wait for No Fish: Intertidal Fishes out of Water. Environmental Biology of Fishes, 44, 165-181. https://doi.org/10.1007/BF00005914 |
[28] |
Genz, J., Jyde, M.B., Svendsen, J.C., et al. (2013) Excess Post-Hypoxic Oxygen Consumption Is Independent from Lactate Accumulation in Two Cyprinid Fishes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165, 54-60. https://doi.org/10.1016/j.cbpa.2013.02.002 |
[29] |
陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹鳃器官的影响[J]. 南方水产科学, 2017, 13(1): 124-130. |
[30] |
林欣, 区又君, 温久福, 等. 急性低氧胁迫对四指马鲅幼鱼鳃和肝组织损伤的影响[J]. 渔业研究, 2023, 45(1): 14-22. |
[31] |
陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹幼鱼肝组织损伤和抗氧化的影响[J]. 动物学杂志, 2016, 51(6): 1049-1058. |
[32] |
Lize, S., Baosuo, L., Bo, L., et al. (2021) Transcriptome Analysis of Gills Provides Insights into Translation Changes under Hypoxic Stress and Reoxygenation in Golden Pompano, Trachinotus ovatus (Linnaeus 1758). Frontiers in Marine Science, 8, Article ID: 763622. |
[33] |
Lushchak, V.I. and Bagnyukova, T.V. (2006) Effects of Different Environmental Oxygen Levels on Free Radical Processes in Fish. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 144, 283-289. https://doi.org/10.1016/j.cbpb.2006.02.014 |
[34] |
Taglialatela, R. and Della Corte, F. (1997) Human and Recombinant Erythropoietin Stimulate Erythropoiesis in the Goldfish Carassius auratus. European Journal of Histochemistry: EJH, 41, 301-304. |
[35] |
Wu, R.S.S., Zhou, B.S., Randall, D.J., et al. (2003) Aquatic Hypoxia Is an Endocrine Disruptor and Impairs Fish Reproduction. Environmental Science & Technology: ES&T, 37, 1137-1141. https://doi.org/10.1021/es0258327 |
[36] |
杨二军, 杨林桐, 王维政, 等. 军曹鱼响应低氧胁迫转录组SNP位点鉴定及其功能注释分析[J]. 海洋学报, 2022, 44(1): 113-124. |
[37] |
Soitamo, A.J., Rabergh, C.M., Gassmann, M., et al. (2001) Characterization of a Hypoxia-Inducible Factor (HIF-1alpha) from Rainbow Trout. Accumulation of Protein Occurs at Normal Venous Oxygen Tension. Journal of Biological Chemistry, 276, 19699-19705. https://doi.org/10.1074/jbc.M009057200 |
[38] |
David, G., Justin, J., Bernd, P., et al. (2015) Genome-Wide Mapping of Hif-1α Binding Sites in Zebrafish. BMC Genomics, 16, Article No. 923. https://doi.org/10.1186/s12864-015-2169-x |
[39] |
Xu, J., Yu, X., Ye, H., Gao, S., et al. (2022) Comparative Metabolomics and Proteomics Reveal Vibrio parahaemolyticus Targets Hypoxia-Related Signaling Pathways of Takifugu obscurus. Frontiers in Immunology, 12, Article ID: 825358. https://doi.org/10.3389/fimmu.2021.825358 |
[40] |
Richard, Y., Eric, C., Richard, K., et al. (2006) Hypoxia Induces Telomerase Reverse Transcriptase (TERT) Gene Expression in Non-Tumor Fish Tissues in Vivo: The Marine Medaka (Oryzias melastigma) Model. BMC Molecular Biology, 7, Article No. 27. https://doi.org/10.1186/1471-2199-7-27 |
[41] |
Lin, Y., Miao, L.-H., Liu, B., et al. (2021) Molecular Cloning and Functional Characterization of the Hypoxia-Inducible Factor-1α in Bighead Carp (Aristichthys nobilis). Fish Physiology and Biochemistry, 47, 351-364. https://doi.org/10.1007/s10695-020-00917-2 |
[42] |
Sollid, J., Rissanen, E., et al. (2006) HIF-1alpha and iNOS Levels in Crucian Carp Gills during Hypoxia-Induced Transformation. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology, 176, 359-369. https://doi.org/10.1007/s00360-005-0059-2 |
[43] |
Ng, P.K.S., Yu, R.M.K., Kwong, T.F.N., et al. (2010) Transcriptional Regulation and Functional Implication of the Grass Carp CITED1 (GcCITED1) in the Negative Regulation of HIF-1. International Journal of Biochemistry and Cell Biology, 42, 1544-1552. https://doi.org/10.1016/j.biocel.2010.06.007 |
[44] |
李欣茹. 低氧胁迫对暗纹东方鲀能量代谢、血液指标及基因表达的影响[D]: [硕士学位论文]. 南京: 南京师范大学, 2018. |
[45] |
Sun, B., Gao, J., Yang, L.J., et al. (2022) Depletion of LOXL2 Improves Respiratory Capacity: From Air-Breathing Fish to Mammal under Hypoxia. International Journal of Biological Macromolecules, 209, 563-575. https://doi.org/10.1016/j.ijbiomac.2022.04.040 |
[46] |
Vuori, K.A.M., Soitamo, A., Vuorinen, P.J., et al. (2004) Baltic Salmon (Salmo salar) Yolk-Sac Fry Mortality Is Associated with Disturbances in the Function of Hypoxia-Inducible Transcription Factor (HIF-1α) and Consecutive Gene Expression. Aquatic Toxicology, 68, 301-313. https://doi.org/10.1016/j.aquatox.2004.03.019 |
[47] |
Yu, R.M.K., Ng, P.K.S., Tan, T., et al. (2008) Enhancement of Hypoxia-Induced Gene Expression in Fish Liver by the Aryl Hydrocarbon Receptor (AhR) Ligand, Benzo[a]pyrene (BaP). Aquatic Toxicology, 90, 235-242. https://doi.org/10.1016/j.aquatox.2008.09.004 |
[48] |
吉宇丹, 孙志鹏, 吕伟华, 等. 梭鲈Ho1基因的克隆及其低氧胁迫下表达分析[J]. 南方水产科学, 2023, 19(2): 98-106. |
[49] |
Shi, L.L., et al. (2023) Deletion of the FoxO4 Gene Increases Hypoxia Tolerance in Zebrafish. International Journal of Molecular Sciences, 24, Article No. 8942. https://doi.org/10.3390/ijms24108942 |
[50] |
Tian, Y-M., Chen, J., Tao, Y., et al. (2014) Molecular Cloning and Function Analysis of Insulin-Like Growth Factor Binding Protein 1a in Blunt Snout Bream (Megalobrama amblycephala). Zoological Research, 35, 300-306. |
[51] |
Sun, S., Wu, Y., Yu, H., et al. (2019) Serum Biochemistry, Liver Histology and Transcriptome Profiling of Bighead Carp Aristichthys nobilis Following Different Dietary Protein Levels. Fish and Shellfish Immunology, 86, 832-839. https://doi.org/10.1016/j.fsi.2018.12.028 |
[52] |
Pancholi, V. (2001) Multifunctional Alpha-Enolase: Its Role in Diseases. Cellular and Molecular Life Sciences: CMLS, 58, 902-920. https://doi.org/10.1007/PL00000910 |
[53] |
Jan, K., Donata, S., Magdalena, G., et al. (2021) Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. International Journal of Molecular Sciences, 22, Article No. 10701. https://doi.org/10.3390/ijms221910701 |
[54] |
Nie, H.T., Wang, H.M., Jiang, K.Y. and Yan, X.W. (2020) Transcriptome Analysis Reveals Differential Immune Related Genes Expression in Ruditapes philippinarum under Hypoxia Stress: Potential HIF and NF-κB Crosstalk in Immune Responses in Clam. BMC Genomics, 21, Article No. 318. https://doi.org/10.1186/s12864-020-6734-6 |
[55] |
Wang, S.Y., Lau, K., Lai, K.-P., et al. (2016) Hypoxia Causes Transgenerational Impairments in Reproduction of Fish. Nature Communications, 7, Article No. 12114. https://doi.org/10.1038/ncomms12114 |
[56] |
Huang, C.-X., Chen, N., Wu, X.-J., et al. (2015) The Zebrafish MiR-462/MiR-731 Cluster Is Induced under Hypoxic Stress via Hypoxia-Inducible Factor 1α and Functions in Cellular Adaptations. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 29, 4901-4913. https://doi.org/10.1096/fj.14-267104 |
[57] |
Elie, F.M., Melissa, G., et al. (2022) Epigenetic and Post-Transcriptional Repression Support Metabolic Suppression in Chronically Hypoxic Goldfish. Scientific Reports, 12, Article No. 5576. https://doi.org/10.1038/s41598-022-09374-8 |
[58] |
Li, X., Li, J., Wang, Y., et al. (2011) Aquaculture Industry in China: Current State, Challenges, and Outlook. Reviews in Fisheries Science, 19, 187-200. https://doi.org/10.1080/10641262.2011.573597 |