[1] |
刘宝良, 雷霁霖, 黄滨, 等. 中国海水鱼类陆基工厂化养殖产业发展现状及展望[J]. 渔业现代化, 2015, 42(1): 1-5, 10. |
[2] |
王峰, 雷霁霖, 高淳仁, 等. 国内外工厂化循环水养殖模式水质处理研究进展[J]. 中国工程科学, 2013, 15(10): 16-23, 32. |
[3] |
谷雪勤. 鱼类循环水养殖系统中细菌群落结构研究进展[J]. 南方农业, 2022, 16(6): 200-202. |
[4] |
Rurangwa, E. and Verdegem, M.C.J. (2015) Microorganisms in Recirculating Aquaculture Systems and Their Management. Reviews in Aquaculture, 7, 117-130. https://doi.org/10.1111/raq.12057 |
[5] |
文尚胜, 左文财, 周悦, 等. 紫外线消毒技术的研究现状及发展趋势[J]. 光学技术, 2020, 46(6): 664-670. |
[6] |
肖茂华, 李亚杰, 汪小旵, 等. 水产养殖尾水处理技术与装备的研究进展[J]. 南京农业大学学报, 2023, 46(1): 1-13. |
[7] |
王涛. 中压紫外线技术——实现彻底杀菌[J]. 流程工业, 2011(4): 18-19. |
[8] |
Roy, P.F.Y. (2015) Fish Health Management Considerations in Recirculating Aquaculture Systems—Part 2: Pathogens 1. Institute of Food and Agricultural Sciences, University of Florida, Gainesville. |
[9] |
Liltved, H. (2002) Ozonation and UV-Irradiation. Recirculating Aquaculture Systems, NRAC Publication, 393-425. |
[10] |
Attramadal, K.J.K., Øie, G., Størseth, T.R., et al. (2012) The Effects of Moderate Ozonation or High Intensity UV-Irradiation on the Microbial Environment in RAS for Marine Larvae. Aquaculture, 330-333, 121-129. https://doi.org/10.1016/j.aquaculture.2011.11.042 |
[11] |
宋昌斌, 郭亚楠, 闫建昌, 等. 紫外发光二极管在水产养殖杀菌消毒中的应用与展望[J]. 渔业现代化, 2021, 48(1): 1-8. |
[12] |
Chevremont, A.C., Farnet, A.M., Coulomb, B., et al. (2012) Effect of Coupled UV-A and UV-C LEDs on both Microbiological and Chemical Pollution of Urban Wastewaters. Science of the Total Environment, 426, 304-310. https://doi.org/10.1016/j.scitotenv.2012.03.043 |
[13] |
Beck, S.E., Ryu, H., Boczek, L.A., et al. (2017) Evaluating UV-C LED Disinfection Performance and Investigating Potential Dual-Wavelength Synergy. Water Research, 109, 207-216. https://doi.org/10.1016/j.watres.2016.11.024 |
[14] |
Oguma, K., Kita, R., Sakai, H., et al. (2013) Application of UV Light Emitting Diodes to Batch and Flow-Through Water Disinfection Systems. Desalination, 328, 24-30. https://doi.org/10.1016/j.desal.2013.08.014 |
[15] |
钟丽琼. 超声波在水处理中的应用研究进展[J]. 广东化工, 2010, 37(7): 202-203, 208. |
[16] |
周红, 生许小芳, 王欢, 等. 超声波灭菌技术的研究进展[J]. 声学技术, 2010, 29(5): 498-502. |
[17] |
Doosti, M.R., Kargar, R. and Sayadi, M.H. (2012) Water Treatment Using Ultrasonic Assistance: A Review. Proceedings of the International Academy of Ecology and Environmental Sciences, 2, 96-110. |
[18] |
Nam Koong, H. (2020) Water Treatment in Recirculating Aquaculture Systems (RAS) by Ultrasonically Induced Cavitation. Master’s Thesis, Christian-Albrechts-Universität Zu Kiel, Kiel. |
[19] |
Svendsen, E., Dahle, S.W., Hagemann, A., et al. (2018) Effect of Ultrasonic Cavitation on Small and Large Organisms for Water Disinfection during Fish Transport. Aquaculture Research, 49, 1166-1175. https://doi.org/10.1111/are.13567 |
[20] |
Nam-Koong, H., Schroeder, J.P., Petrick, G. and Schulz, C. (2020) Preliminary Test of Ultrasonically Disinfection Efficacy towards Selected Aquaculture Pathogens. Aquaculture, 515, Article ID: 734592. https://doi.org/10.1016/j.aquaculture.2019.734592 |
[21] |
Lakeh, A.A.B., Kloas, W., Jung, R., et al. (2013) Low Frequency Ultrasound and UV-C for Elimination of Pathogens in Recirculating Aquaculture Systems. Ultrasonics Sonochemistry, 20, 1211-1216. https://doi.org/10.1016/j.ultsonch.2013.01.008 |
[22] |
Sassi, J., Viitasalo, S., Rytkonen, J., et al. (2005) Experiments with Ultraviolet Light, Ultrasound and Ozone Technologies for Onboard Ballast Water Treatment. Valtion Teknillinen Tutkimuskeskus, 2313, 1-86. |
[23] |
Wolber, J.E. and Pietrock, M. (2004) Ultrasonic Water Treatment as an Alternative Means of Controlling Fish Mortality Caused by Bucephalus Polymorphus Cercariae. European Association of Fish Pathologists, 24, 153-160. |
[24] |
Lakeh, A.A.B. (2015) Effect of Low Frequency Ultrasound and Ultraviolet-C Light for Water Disinfection in Recirculating Aquaculture Systems. https://doi.org/10.18452/17146 |
[25] |
Liu, L., Wang, N., Laghari, A.A., et al. (2023) A Review and Perspective of Environmental Disinfection Technology Based on Microwave Irradiation. Current Pollution Reports, 9, 46-59. https://doi.org/10.1007/s40726-022-00247-2 |
[26] |
李鲁晶, 郭文, 景福涛, 等. 全封闭工厂化循环水微波消毒养殖系统的组成及运行[J]. 齐鲁渔业, 2010, 27(7): 26-30. |
[27] |
李鲁晶, 郭文, 简玉霞, 等. 基于微波消毒的工厂化养殖设施的贝类净化试验[J]. 齐鲁渔业, 2012, 29(3): 11-14. |
[28] |
Musee, N., Ngwenya, P., Motaung, L.K., et al. (2023) Occurrence, Effects, and Ecological Risks of Chemicals in Sanitizers and Disinfectants: A Review. Environmental Chemistry and Ecotoxicology, 5, 62-78. https://doi.org/10.1016/j.enceco.2023.01.003 |
[29] |
Pedersen, L.F., Pedersen, P.B., Nielsen, J.L. and Nielsen, P.H. (2009) Peracetic Acid Degradation and Effects on Nitrification in Recirculating Aquaculture Systems. Aquaculture, 296, 246-254. https://doi.org/10.1016/j.aquaculture.2009.08.021 |
[30] |
Davidson, J., Summerfelt, S., Straus, D.L., et al. (2019) Evaluating the Effects of Prolonged Peracetic Acid Dosing on Water Quality and Rainbow Trout Oncorhynchus mykiss Performance in Recirculation Aquaculture Systems. Aquacultural Engineering, 84, 117-127. https://doi.org/10.1016/j.aquaeng.2018.12.009 |
[31] |
Pedersen, L.F., Pedersen, P.B., Nielsen, J.L. and Nielsen, P.H. (2010) Long Term/Low Dose Formalin Exposure to Small-Scale Recirculation Aquaculture Systems. Aquacultural Engineering, 42, 1-7. https://doi.org/10.1016/j.aquaeng.2009.08.002 |
[32] |
Heinen, J.M., Weber, A.L., Noble, A.C. and Morton, J.D. (1995) Tolerance to Formalin by a Fluidized-Bed Biofilter and Rainbow Trout Oncorhynchus mykiss in a Recirculating Culture System. Journal of the World Aquaculture Society, 26, 65-71. https://doi.org/10.1111/j.1749-7345.1995.tb00210.x |
[33] |
Liu, D., Straus, D.L., Pedersen, L.F. and Meinelt, T. (2018) Periodic Bacterial Control with Peracetic Acid in a Recirculating Aquaculture System and Its Long-Term Beneficial Effect on Fish Health. Aquaculture, 485, 154-159. https://doi.org/10.1016/j.aquaculture.2017.11.050 |
[34] |
Suurnäkki, S., Pulkkinen, J.T., Lindholm-Lehto, P.C., et al. (2020) The Effect of Peracetic Acid on Microbial Community, Water Quality, Nitrification and Rainbow Trout (Oncorhynchus mykiss) Performance in Recirculating Aquaculture Systems. Aquaculture, 516, Article ID: 734534. https://doi.org/10.1016/j.aquaculture.2019.734534 |
[35] |
Bögner, D., Bögner, M., Schmachtl, F., et al. (2021) Hydrogen Peroxide Oxygenation and Disinfection Capacity in Recirculating Aquaculture Systems. Aquacultural Engineering, 92, Article ID: 102140. https://doi.org/10.1016/j.aquaeng.2020.102140 |
[36] |
周煊亦, 房燕, 曹广斌, 等. 臭氧处理技术在工厂化水产养殖中的应用研究[J]. 水产学杂志, 2012, 25(1): 49-57. |
[37] |
Powell, A. and Scolding, J.W.S. (2018) Direct Application of Ozone in Aquaculture Systems. Reviews in Aquaculture, 10, 424-438. https://doi.org/10.1111/raq.12169 |
[38] |
周烜亦, 蒋树义, 韩世成, 等. 工厂化水产养殖臭氧氧化氨氮过程中臭氧残留的安全性[J]. 江苏农业科学, 2012, 40(7): 222-224. |
[39] |
Janssen, C., Simone, D. and Guinet, M. (2011) Preparation and Accurate Measurement of Pure Ozone. Review of Scientific Instruments, 82, Article ID: 034102. https://doi.org/10.1063/1.3557512 |
[40] |
胡珊, 毛澍洲, 邱光宇, 等. 应用于臭氧消毒系统的新型静态混合器结构设计[J]. 环境工程学报, 2020, 14(11): 3201-3207. |
[41] |
曹广斌, 贾惠文, 蒋树义, 等. 循环水养鱼系统中臭氧射流混合设备设计与性能测试[J]. 农业工程学报, 2011, 27(10): 73-78. |
[42] |
曹广斌, 程启云, 韩世成, 等. 应用于冷水鱼养殖的臭氧-氨氮反应塔设计及试验[J]. 大连海洋大学学报, 2014(4): 403-408. |
[43] |
刘鹏, 倪琦, 管崇武, 等. 水产养殖中多层式臭氧混合装置效率研究[J]. 广东农业科学, 2014, 41(10): 115-119, 131. |
[44] |
Wedemeyer, G.A., Nelson, N.C. and Yasutake, W.T. (1979) Physiological and Biochemical Aspects of Ozone Toxicity to Rainbow Trout (Salmo Gairdneri). Journal of the Fisheries Board of Canada, 36, 605-614. https://doi.org/10.1139/f79-088 |
[45] |
韩世成, 戚翠战, 曹广斌, 等. 臭氧消毒杀菌技术在工厂化水产养殖中的应用[J]. 水产学杂志, 2015, 28(6): 44-52. |
[46] |
戚翠战, 韩世成, 曹广斌, 等. 鱼类循环水养殖水处理中的臭氧浓度PID控制[J]. 渔业现代化, 2014, 41(2): 18-22. |
[47] |
刘鹏. 循环水养殖系统中臭氧高效混合装置与在线监控技术研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2014. |
[48] |
Robson, C.M. (1982) Design Engineering Aspects of Ozonation Systems. In: Rice, R.G., Ed., Handbook of Ozone Technology and Applications, Butterworth Publishers, Oxford, 1. |
[49] |
Cryer, E. (1992) Recent Applications of Ozone in Freshwater Fish Hatchery Systems. Proceedings of the Third International Symposium on the Use of Ozone in Aquatic Systems, Stamford, 8-11 September 1992, 134-154. |
[50] |
Hunter, G.L., O’BRIEN, W.J., Hulsey, R.A., et al. (1998) Emerging Disinfection Technologies: Medium-Pressure Ultraviolet Lamps and Other Systems Are Considered for Wastewater Application. Water Environment & Technology, 10, 40-44. |
[51] |
管崇武, 杨菁, 单建军, 等. 工厂化循环水养殖中臭氧/紫外线反应系统的水处理性能[J]. 农业工程学报, 2014(23): 253-259. |
[52] |
Sharrer, M.J. and Summerfelt, S.T. (2007) Ozonation Followed by Ultraviolet Irradiation Provides Effective Bacteria Inactivation in a Freshwater Recirculating System. Aquacultural Engineering, 37, 180-191. https://doi.org/10.1016/j.aquaeng.2007.05.001 |
[53] |
Moreno-Andres, J., Rueda-Marquez, J.J., Homola, T., et al. (2020) A Comparison of Photolytic, Photochemical and Photocatalytic Processes for Disinfection of Recirculation Aquaculture Systems (RAS) Streams. Water Research, 181, Article ID: 115928. https://doi.org/10.1016/j.watres.2020.115928 |
[54] |
Villar-Navarro, E., Levchuk, I., Rueda-Márquez, J.J., et al. (2021) Inactivation of Simulated Aquaculture Stream Bacteria at Low Temperature Using Advanced UVA-and Solar-Based Oxidation Methods. Solar Energy, 227, 477-489. https://doi.org/10.1016/j.solener.2021.09.029 |
[55] |
Qi, W., Zhu, S., Shitu, A., et al. (2020) Low Concentration Peroxymonosulfate and UVA-LED Combination for E. Coli Inactivation and Wastewater Disinfection from Recirculating Aquaculture Systems. Journal of Water Process Engineering, 36, Article ID: 101362. https://doi.org/10.1016/j.jwpe.2020.101362 |
[56] |
Wang, W., Huang, G., Jimmy, C.Y. and Wong, P.K. (2015) Advances in Photocatalytic Disinfection of Bacteria: Development of Photocatalysts and Mechanisms. Journal of Environmental Sciences, 34, 232-247. https://doi.org/10.1016/j.jes.2015.05.003 |
[57] |
Gamage, J. and Zhang, Z. (2010) Applications of Photocatalytic Disinfection. International Journal of Photoenergy, 2010, Article ID: 764870. https://doi.org/10.1155/2010/764870 |
[58] |
Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., et al. (2009) Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends. Catalysis Today, 147, 1-59. https://doi.org/10.1016/j.cattod.2009.06.018 |
[59] |
吴斌, 张华一, 吴垠, 等. TiO2紫外复合消毒机在零污水排放的工厂化养殖系统中杀菌效果研究[J]. 水产科学, 2009, 28(6): 317-320. |
[60] |
Rodriguez-Gonzalez, L., Pettit, S.L., Zhao, W., et al. (2019) Oxidation of off Flavor Compounds in Recirculating Aquaculture Systems Using UV-TiO2 Photocatalysis. Aquaculture, 502, 32-39. https://doi.org/10.1016/j.aquaculture.2018.12.022 |
[61] |
Song, K.S., Yu, X.C., Hu, D.D., et al. (2013) Photocatalytic Degradation of Ammonia Nitrogen in Aquaculture Wastewater by Using Nano-ZnO. Advanced Materials Research, 610, 564-568. https://doi.org/10.4028/www.scientific.net/AMR.610-613.564 |
[62] |
张珈瑜, 杨诗林, 崔崇威, 邱珊, 邓凤霞. 电化学消毒技术研究进展[J]. 武汉工程大学学报, 2021, 43(5): 473-480, 495. |
[63] |
Bergmann, H. (2021) Electrochemical Disinfection-State of the Art and Tendencies. Current Opinion in Electrochemistry, 28, Article ID: 100694. https://doi.org/10.1016/j.coelec.2021.100694 |
[64] |
Bergmann, M.E.H. and Koparal, A.S. (2005) Studies on Electrochemical Disinfectant Production Using Anodes Containing RuO2. Journal of Applied Electrochemistry, 35, 1321-1329. https://doi.org/10.1007/s10800-005-9064-0 |
[65] |
Ding, J., Zhao, Q., Zhang, Y., et al. (2015) The EAND Process: Enabling Simultaneous Nitrogen-Removal and Disinfection for WWTP Effluent. Water Research, 74, 122-131. https://doi.org/10.1016/j.watres.2015.02.005 |
[66] |
Jeong, J., Kim, C. and Yoon, J. (2009) The Effect of Electrode Material on the Generation of Oxidants and Microbial Inactivation in the Electrochemical Disinfection Processes. Water Research, 43, 895-901. https://doi.org/10.1016/j.watres.2008.11.033 |
[67] |
Ruan, Y., Lu, C., Guo, X., et al. (2016) Electrochemical Treatment of Recirculating Aquaculture Wastewater Using a Ti/RuO2-IrO2 Anode for Synergetic Total Ammonia Nitrogen and Nitrite Removal and Disinfection. Transactions of the Asabe, 59, 1831-1840. https://doi.org/10.13031/trans.59.11630 |
[68] |
Xing, Y.Q. and Lin, J.W. (2011) Application of Electrochemical Treatment for the Effluent from Marine Recirculating Aquaculture Systems. Procedia Environmental Sciences, 10, 2329-2335. https://doi.org/10.1016/j.proenv.2011.09.363 |
[69] |
Kropp, R., Summerfelt, S.T., Woolever, K., et al. (2022) A Novel Advanced Oxidation Process (AOP) That Rapidly Removes Geosmin and 2-Methylisoborneol (MIB) from Water and Significantly Reduces Depuration Times in Atlantic Salmon Salmo Salar RAS Aquaculture. Aquacultural Engineering, 97, Article ID: 102240. https://doi.org/10.1016/j.aquaeng.2022.102240 |
[70] |
Lindholm-Lehto, P.C., Vielma, J., Pakkanen, H. and Alén, R. (2019) Depuration of Geosmin-and 2-Methylisoborneol-Induced Off-Flavors in Recirculating Aquaculture System (RAS) Farmed European Whitefish Coregonus lavaretus. Journal of Food Science and Technology, 56, 4585-4594. https://doi.org/10.1007/s13197-019-03910-7 |
[71] |
Mook, W.T., Chakrabarti, M.H., Aroua, M.K., et al. (2012) Removal of Total Ammonia Nitrogen (TAN), Nitrate and Total Organic Carbon (TOC) from Aquaculture Wastewater Using Electrochemical Technology: A Review. Desalination, 285, 1-13. https://doi.org/10.1016/j.desal.2011.09.029 |
[72] |
Lahav, O., Asher, R.B. and Gendel, Y. (2015) Potential Applications of Indirect Electrochemical Ammonia Oxidation within the Operation of Freshwater and Saline-Water Recirculating Aquaculture Systems. Aquacultural Engineering, 65, 55-64. https://doi.org/10.1016/j.aquaeng.2014.10.009 |