[1] |
张卫峰, 张福锁, 马骥. 中国、美国、摩洛哥磷矿资源优势及开发战略比较分析[J]. 自然资源学报, 2005, 20(3): 378-386. |
[2] |
Cooper, J., Lombardi, R., Boardman, D., et al. (2011) The Future Distribution and Production of Global Phosphate Rock Reserves. Resources, Conservation and Recycling, 57, 78-86. https://doi.org/10.1016/j.resconrec.2011.09.009 |
[3] |
Akinnawo, S.O. (2023) Eutrophication: Causes, Consequences, Physical, Chemical and Biological Techniques for Mitigation Strategies. Environmental Challenges, 12, Article ID: 100733. https://doi.org/10.1016/j.envc.2023.100733 |
[4] |
Liu, H., Hu, G., Basar, I, A., et al. (2021) Phosphorus Recovery from Municipal Sludge-Derived Ash and Hydrochar through Wet-Chemical Technology: A Review towards Sustainable Waste Management. Chemical Engineering Journal, 417, Article ID: 129300. https://doi.org/10.1016/j.cej.2021.129300 |
[5] |
中华人民共和国住房和城乡建设部. 2022年中国城市建设状况公报[EB/OL]. 2023. https://www.mohurd.gov.cn/file/2023/20231012/7c6d9416-49d5-463a-b702-8a22f6c350b0.docx?n=2022年中国城市建设状况公报, 2024-04-12. |
[6] |
王超, 刘清伟, 职音, 等. 中国市政污泥中磷的含量与形态分布[J]. 环境科学, 2019, 40(4): 1922-1930. |
[7] |
郝晓地, 周健, 王崇臣, 等. 污水磷回收新产物——蓝铁矿[J]. 环境科学学报, 2018, 38(11): 4223-4234. |
[8] |
Zhang, J., Chen, Z., Liu, Y., et al. (2022) Phosphorus Recovery from Wastewater and Sewage Sludge as Vivianite. Journal of Cleaner Production, 370, Article ID: 133439. https://doi.org/10.1016/j.jclepro.2022.133439 |
[9] |
Yang, L., Guo, X., Liang, S., et al. (2023) A Sustainable Strategy for Recovery of Phosphorus as Vivianite from Sewage Sludge via Alkali-Activated Pyrolysis, Water Leaching and Crystallization. Water Research, 233, Article ID: 119769. https://doi.org/10.1016/j.watres.2023.119769 |
[10] |
Wang, S., Wu, Y., An, J., et al. (2020) Geobacter Autogenically Secretes Fulvic Acid to Facilitate the Dissimilated Iron Reduction and Vivianite Recovery. Environmental Science & Technology, 54, 10850-10858. https://doi.org/10.1021/acs.est.0c01404 |
[11] |
邹正康, 郭晓, 梁莎, 等. 市政污泥热化学转化技术研究进展[J]. 能源环境保护, 2023, 37(5): 110-120. |
[12] |
Wang, Q., Zhang, C., Patel, D., et al. (2020) Coevolution of Iron, Phosphorus, and Sulfur Speciation during Anaerobic Digestion with Hydrothermal Pretreatment of Sewage Sludge. Environmental Science & Technology, 54, 8362-8372. https://doi.org/10.1021/acs.est.0c00501 |
[13] |
陈伟, 郑晓园, 纪莎莎, 等. 污水污泥水热炭化处理研究进展[J]. 热能动力工程, 2020, 35(2): 1-8, 25. |
[14] |
Xiao, Y., Ding, L., Yang, Y., et al. (2022) Iron Valence State Evolution and Hydrochar Properties under Hydrothermal Carbonization of Dyeing Sludge. Waste Management, 152, 94-101. https://doi.org/10.1016/j.wasman.2022.07.009 |
[15] |
Yang, X., Yu, C., Hassan, B., et al. (2023) Pyrolytic Mechanisms of Typical Organic Components of Sewage Sludge In the Presence of CaO: Polysaccharides, Proteins, and Lipids. Science of the Total Environment, 901, Article ID: 166020. https://doi.org/10.1016/j.scitotenv.2023.166020 |
[16] |
Yu, S., He, J., Zhang, Z., et al. (2024) Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. Advanced Materials. https://doi.org/10.1002/adma.202307412 |
[17] |
Fang, Z., Zhuang, X., Zhang, X., et al. (2023) Influence of Paraments on the Transformation Behaviors and Directional Adjustment Strategies of Phosphorus Forms during Different Thermochemical Treatments of Sludge. Fuel, 333, Article ID: 126544. https://doi.org/10.1016/j.fuel.2022.126544 |
[18] |
Rebosura, M., Salehin, S., Pikaar, I., et al. (2018) A Comprehensive Laboratory Assessment of the Effects of Sewer-Dosed Iron Salts on Wastewater Treatment Processes. Water Research, 146, 109-117. https://doi.org/10.1016/j.watres.2018.09.021 |
[19] |
Liu, X., Zhai, Y., Li, S., et al. (2020) Hydrothermal Carbonization of Sewage Sludge: Effect of Feed-Water PH on Hydrochar’s Physicochemical Properties, Organic Component and Thermal Behavior. Journal of Hazardous Materials, 388, Article ID: 122084. https://doi.org/10.1016/j.jhazmat.2020.122084 |
[20] |
Wang, F., Guo, C., Liu, X., et al. (2022) Revealing Carbon-Iron Interaction Characteristics in Sludge-Derived Hydrochars under Different Hydrothermal Conditions. Chemosphere, 300, Article ID: 134572. https://doi.org/10.1016/j.chemosphere.2022.134572 |
[21] |
Ogorodova, L., Vigasina, M., Mel’chakova, L., et al. (2017) Enthalpy of Formation of Natural Hydrous Iron Phosphate: Vivianite. The Journal of Chemical Thermodynamics, 110, 193-200. https://doi.org/10.1016/j.jct.2017.02.020 |
[22] |
Yu, S., Zhao, P., Yang, X., et al. (2022) Low-Temperature Hydrothermal Carbonization of Pectin Enabled by High Pressure. Journal of Analytical and Applied Pyrolysis, 166, Article ID: 105627. https://doi.org/10.1016/j.jaap.2022.105627 |
[23] |
于士杰, 赵鹏, 刘茂清, 等. 温度-压力解耦对木质素水热过程中结构变化及解聚产物的影响[J]. 燃料化学学报(中英文), 2023, 51(8): 1106-1113. |
[24] |
Gu, S., Qian, Y., Jiao, Y., et al. (2016) An Innovative Approach for Sequential Extraction of Phosphorus in Sediments: Ferrous Iron P as an Independent P Fraction. Water Research, 103, 352-361. https://doi.org/10.1016/j.watres.2016.07.058 |
[25] |
Wang, Q., Kim, T.H., Reitzel, K., et al. (2021) Quantitative Determination of Vivianite in Sewage Sludge by a Phosphate Extraction Protocol Validated by PXRD, SEM-EDS, and 31P NMR Spectroscopy towards Efficient Vivianite Recovery. Water Research, 202, Article ID: 117411. https://doi.org/10.1016/j.watres.2021.117411 |
[26] |
郑晓园, 蒋正伟, 陈伟, 等. 污水污泥水热炭化过程中磷的迁移转化特性[J]. 化工进展, 2020, 39(5): 2017-2025. |
[27] |
Zhuang, X., Huang, Y., Song, Y., et al. (2017) The Transformation Pathways of Nitrogen in Sewage Sludge during Hydrothermal Treatment. Bioresource Technology, 245, 463-740. https://doi.org/10.1016/j.biortech.2017.08.195 |
[28] |
汪君, 时澜, 高英, 等. 葡萄糖水热过程中焦炭结构演变特性[J]. 农业工程学报, 2013, 29(7): 191-198. |
[29] |
Wang, T., Zhai, Y., Zhu, Y., et al. (2018) Influence of Temperature on Nitrogen Fate during Hydrothermal Carbonization of Food Waste. Bioresource Technology, 247, 182-189. https://doi.org/10.1016/j.biortech.2017.09.076 |