|  [1]  |  
              Barrett, K.E. and Wu, G.D. (2017) Influence of the Microbiota on Host Physiology—Moving beyond the Gut. The Journal of Physiology, 595, 433-435.  https://doi.org/10.1113/JP273451  |  
           
 
            
            |  [2]  |  
              Okubo, H., Nakatsu, Y., et al. (2018) Gut Microbiota as a Therapeutic Target for Metabolic Disorders. Current Medicinal Chemistry, 25, 984-1001.  https://doi.org/10.2174/0929867324666171009121702  |  
           
 
            
            |  [3]  |  
              Franco-Lopez, J., Duplessis, M., Bui, A., et al. (2020) Correlations between the Composition of the Bovine Microbiota and Vitamin B12 Abundance. MSystems, 5, E00107-20.  https://doi.org/10.1128/mSystems.00107-20  |  
           
 
            
            |  [4]  |  
              Inagaki, T., Moschetta, A., Lee, Y.K., et al. (2006) Regulation of an Tibacterial Defense in the Small Intestine by the Nuclear Bile Acid Receptor. Proceedings of the National Academy of Sciences of the United States of America, 103, 3920-3925.  https://doi.org/10.1073/pnas.0509592103  |  
           
 
            
            |  [5]  |  
              Zheng, D., Liwinski, T. and Elinav, E. (2020) Interaction between Microbiota and Immunity in Health and Disease. Cell Research, 30, 492-506.  https://doi.org/10.1038/s41422-020-0332-7  |  
           
 
            
            |  [6]  |  
              Bger, M., Leeuwen, S., Bueren, A., et al. (2019) Structural Identity of Galactooligosaccharide Molecules Selectively Utilized by Single Cultures of Probiotic Bacterial Strains. Journal of Agricultural Food Chemistry, 67, 13969-13977.  https://doi.org/10.1021/acs.jafc.9b05968  |  
           
 
            
            |  [7]  |  
              Quinn, E.M., Joshi, L. and Hickey, R.M. (2020) Symposium Review: Dairy-Derived Oligosaccharides—Their Influence on Host-Microbe Interactions in the Gastrointestinal Tract of Infants. Journal of Dairy Science, 103, 3816-3827.  https://doi.org/10.3168/jds.2019-17645  |  
           
 
            
            |  [8]  |  
              Thomson, P., Medina, D.A., Garrido, D., et al. (2017) Human Milk Oligosaccharides and Infant Gut Bifidobacteria: Molecular Strategies for Their Utilization. Food Microbiology, 75, 37-46.  https://doi.org/10.1016/j.fm.2017.09.001  |  
           
 
            
            |  [9]  |  
              Lai, K., Elsas, L.J. and Wierenga, K.J. (2009) Galactose Toxicity in Animals. IUBMB Life, 61, 1063-1074.  https://doi.org/10.1002/iub.262  |  
           
 
            
            |  [10]  |  
              Waisbren, S.E., Tran, C., Demirbas, D., et al. (2021) Transient Developmental Delays in Infants with Duarte-2 Variant Galactosemia. Molecular Genetics and Metabolism, 134, 132-138.  https://doi.org/10.1016/j.ymgme.2021.07.009  |  
           
 
            
            |  [11]  |  
              Riehman, K., Crews, C. and Fridovich-Keil, J.L. (2001) Relationship between Genotype, Activity, and Galactose Sensitivity in Yeast Expressing Patient Alleles of Human Galactose-1-Phosphate Uridylyltransferase. Journal of Biological Chemistry, 276, 10634-10640.  https://doi.org/10.1074/jbc.M009583200  |  
           
 
            
            |  [12]  |  
              Leslie, N.D., Yager, K.L., Mcnamara, P.D., et al. (1996) A Mouse Model of Galactose-1-Phosphate Uridyl Transferase Deficiency. Biochemistry and Molecular Medicine, 59, 7-12.  https://doi.org/10.1006/bmme.1996.0057  |  
           
 
            
            |  [13]  |  
              Welling, L., Bernstein, L.E., Berry, G.T., et al. (2017) International Clinical Guideline for the Management of Classical Galactosemia: Diagnosis, Treatment, and Follow-Up. Journal of Inherited Metabolic Disease, 40, 171-176.  https://doi.org/10.1007/s10545-016-9990-5  |  
           
 
            
            |  [14]  |  
              Demirbas, D., Coelho, A.I., Rubio-Gozalbo, M.E., et al. (2018) Hereditary Galactosemia. Metabolism, 83, 188-196.  https://doi.org/10.1016/j.metabol.2018.01.025  |  
           
 
            
            |  [15]  |  
              Timson, D.J. (2016) The Molecular Basis of Galactosemia—Past, Present and Future. Gene, 589, 133-141.  https://doi.org/10.1016/j.gene.2015.06.077  |  
           
 
            
            |  [16]  |  
              Abdulla, O.A., Neamah, W., Sultan, M., et al. (2021) The Ability of AhR Ligands to Attenuate Delayed Type Hypersensitivity Reaction Is Associated with Alterations in the Gut Microbiota. Frontiers in Immunology, 12, Article ID: 684727.  https://doi.org/10.3389/fimmu.2021.684727  |  
           
 
            
            |  [17]  |  
              Gu, S., Yang, D., Liu, C., et al. (2023) The Role of Probiotics in Prevention and Treatment of Food Allergy. Food Science and Human Wellness, 12, 681-690.  https://doi.org/10.1016/j.fshw.2022.09.001  |  
           
 
            
            |  [18]  |  
              Toneatti, D.M., Albarracín, V.H., Flores, M.R., et al. (2017) Stratified Bacterial Diversity along Physico-Chemical Gradients in High-Altitude Modern Stromatolites. Frontiers in Microbiology, 8, Article No. 646.  https://doi.org/10.3389/fmicb.2017.00646  |  
           
 
            
            |  [19]  |  
              Bello-Gil, D., Audebert, C., Olivera-Ardid, S., Pérez-Cruz, M., et al. (2019) The Formation of Glycan-Specific Natural Antibodies Repertoire in Galt Gene Editing Mice Is Determined by Gut Microbiota. Frontiers in Immunology, 10, Article No. 342.  https://doi.org/10.3389/fimmu.2019.00342  |  
           
 
            
            |  [20]  |  
              Furet, J.P., Firmesse, O., Gourmelon, M., et al. (2009) Comparative Assessment of Human and Farm Animal Faecal Microbiota Using Real-Time Quantitative PCR. FEMS Microbiology Ecology, 68, 351-362.  https://doi.org/10.1111/j.1574-6941.2009.00671.x  |  
           
 
            
            |  [21]  |  
              Sun, Y., Zhang, S., Nie, Q., et al. (2023) Gut Firmicutes: Relationship with Dietary Fiber and Role in Host Homeostasis. Critical Reviews in Food Science and Nutrition, 63, 12073-12088.  https://doi.org/10.1080/10408398.2022.2098249  |  
           
 
            
            |  [22]  |  
              Song, H., Wang, W., Shen, B., et al. (2018) Pretreatment with Probiotic Bifico Ameliorates Colitis-Associated Cancer in Mice: Transcriptome and Gut Flora Profiling. Cancer Science, 109, 666-677.  https://doi.org/10.1111/cas.13497  |  
           
 
            
            |  [23]  |  
              Frohman, E.M., Racke, M.K. and Raine, C.S. (2006) Multiple Sclerosis—The Plaque and Its Pathogenesis. The New England Journal of Medicine, 354, 942-955.  https://doi.org/10.1056/NEJMra052130  |  
           
 
            
            |  [24]  |  
              Askari, H., Shojaei-Zarghani, S., Raeis-Abdollahi, E., et al. (2023) The Role of Gut Microbiota in Inflammatory Bowel Disease—Current State of the Art. Mini-Reviews in Medicinal Chemistry, 23, 1376-1389.  https://doi.org/10.2174/1389557522666220914093331  |  
           
 
            
            |  [25]  |  
              Lu, H.P., Wang, Y.B., Huang, S.W., et al. (2012) Metagenomic Analysis Reveals a Functional Signature for Biomass Degradation by Cecal Microbiota in the Leaf-Eating Flying Squirrel (Petaurista alborufus Lena). BMC Genomics, 13, Article No. 466.  https://doi.org/10.1186/1471-2164-13-466  |  
           
 
            
            |  [26]  |  
              Wei, F., Xu, H., Yan, C., et al. (2019) Changes of Intestinal Flora in Patients with Systemic Lupus Erythematosus in Northeast China. PLOS ONE, 14, e0213063.  https://doi.org/10.1371/journal.pone.0213063  |  
           
 
            
            |  [27]  |  
              Na, R.S., Tae, W.W. and Jin, W.B. (2015) Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends in Biotechnology, 33, 496-503.  https://doi.org/10.1016/j.tibtech.2015.06.011  |