[1] |
陈辰. 毛蚶群体遗传学研究[D]: [博士学位论文]. 青岛: 中国海洋大学, 2016. |
[2] |
王庆志, 张明, 滕炜鸣, 等. 毛蚶养殖生物学研究进展[J]. 大连海洋大学学报, 2015, 30(4): 437-443. |
[3] |
吴雪, 崔龙波. 海洋主要污染物对贝类及其环境的影响[J]. 渔业研究, 2016, 38(2): 165-170. |
[4] |
龚倩. 海水滩涂贝类中重金属镉的检测及富集规律的研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2012. |
[5] |
王琳, 潘鲁青, 苗晶晶. 汞、镉和苯并[α]芘、多氯联苯对栉孔扇贝幼贝单一与联合毒性的研究[J]. 海洋环境科学, 2010, 29(4): 535-540. |
[6] |
陈琳琳, 张高生, 陈静, 等. 汞、硒暴露对紫贻贝(Mytilus edulis)抗氧化酶系统的影响[J]. 生态毒理学报, 2011, 6(4): 383-388. |
[7] |
马建新, 张宜奎, 宋秀凯, 等. 重金属胁迫对海洋贝类毒性研究进展[J]. 海洋湖沼通报, 2011(2): 35-42. |
[8] |
Vijayaraman, P.K. (1993) Physiological Responses on the Freshwater Prawn, Macrobrachium malcolmsonii (Milne Edwards) to the Heavy Metals, Cadmium, Copper, Chromium and Zinc. Ph.D. Thesis, Bharathidasan University. |
[9] |
van Dyk, J.C., Pieterse, G.M. and van Vuren, J.H.J. (2007) Histological Changes in the Liver of Oreochromis mossambicus (Cichlidae) after Exposure to Cadmium and Zinc. Ecotoxicology and Environmental Safety, 66, 432-440. https://doi.org/10.1016/j.ecoenv.2005.10.012 |
[10] |
Wu, J., Chen, H. and Huang, D. (2008) Histopathological and Biochemical Evidence of Hepatopancreatic Toxicity Caused by Cadmium and Zinc in the White Shrimp, Litopenaeus vannamei. Chemosphere, 73, 1019-1026. https://doi.org/10.1016/j.chemosphere.2008.08.019 |
[11] |
Nicholson, S. and Lam, P.K.S. (2005) Pollution Monitoring in Southeast Asia Using Biomarkers in the Mytilid Mussel Perna viridis (Mytilidae: Bivalvia). Environment International, 31, 121-132. https://doi.org/10.1016/j.envint.2004.05.007 |
[12] |
Xing, Q., Zhang, L., Li, Y., Zhu, X., Li, Y., Guo, H., et al. (2019) Development of Novel Cardiac Indices and Assessment of Factors Affecting Cardiac Activity in a Bivalve Mollusc Chlamys farreri. Frontiers in Physiology, 10, Article No. 293. https://doi.org/10.3389/fphys.2019.00293 |
[13] |
Beyer, J., Green, N.W., Brooks, S., Allan, I.J., Ruus, A., Gomes, T., et al. (2017) Blue Mussels (Mytilus edulis spp.) as Sentinel Organisms in Coastal Pollution Monitoring: A Review. Marine Environmental Research, 130, 338-365. https://doi.org/10.1016/j.marenvres.2017.07.024 |
[14] |
Zhao, X., Wang, S., Li, X., Liu, H. and Xu, S. (2021) Cadmium Exposure Induces TNF-α-Mediated Necroptosis via FPR2/TGF-β/NF-κB Pathway in Swine Myocardium. Toxicology, 453, Article ID: 152733. https://doi.org/10.1016/j.tox.2021.152733 |
[15] |
Limaye, D.A. and Shaikh, Z.A. (1999) Cytotoxicity of Cadmium and Characteristics of Its Transport in Cardiomyocytes. Toxicology and Applied Pharmacology, 154, 59-66. https://doi.org/10.1006/taap.1998.8575 |
[16] |
Lei, W., Wang, L., Liu, D., Xu, T. and Luo, J. (2011) Histopathological and Biochemical Alternations of the Heart Induced by Acute Cadmium Exposure in the Freshwater Crab Sinopotamon yangtsekiense. Chemosphere, 84, 689-694. https://doi.org/10.1016/j.chemosphere.2011.03.023 |
[17] |
Ferramola, M.L., Antón, R.I., Anzulovich, A.C. and Giménez, M.S. (2011) Myocardial Oxidative Stress Following Sub-Chronic and Chronic Oral Cadmium Exposure in Rats. Environmental Toxicology and Pharmacology, 32, 17-26. https://doi.org/10.1016/j.etap.2011.03.002 |
[18] |
Li, X., Zheng, Y., Zhang, G., Wang, R., Jiang, J. and Zhao, H. (2021) Cadmium Induced Cardiac Toxicology in Developing Japanese Quail (Coturnix japonica): Histopathological Damages, Oxidative Stress and Myocardial Muscle Fiber Formation Disorder. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 250, Article ID: 109168. https://doi.org/10.1016/j.cbpc.2021.109168 |
[19] |
王晓宇, 王清, 杨红生. 镉和汞两种重金属离子对四角蛤蜊的急性毒性[J]. 海洋科学, 2009(12): 24-29. |
[20] |
魏爱泓, 矫新明, 毛成责, 等. 重金属汞对海洋底栖动物毛蚶和紫贻贝毒性效应研究[J]. 生态毒理学报, 2018, 13(6): 352-359. |
[21] |
赵艳芳, 吴继法, 翟毓秀, 等. 镉胁迫对不同镉富集能力海水养殖贝类抗氧化能力的影响——以扇贝和菲律宾蛤仔为例[J]. 生态毒理学报, 2014, 9(2): 224-232. |
[22] |
王来, 姚素梅, 王强. 镉的心脏毒性[J]. 环境与职业医学, 2006(5): 436-439. |
[23] |
Siti, H.N., Kamisah, Y. and Kamsiah, J. (2015) The Role of Oxidative Stress, Antioxidants and Vascular Inflammation in Cardiovascular Disease (a Review). Vascular Pharmacology, 71, 40-56. https://doi.org/10.1016/j.vph.2015.03.005 |
[24] |
Duan, J., Yu, Y., Li, Y., Li, Y., Liu, H., Jing, L., et al. (2015) Low-Dose Exposure of Silica Nanoparticles Induces Cardiac Dysfunction via Neutrophil-Mediated Inflammation and Cardiac Contraction in Zebrafish Embryos. Nanotoxicology, 10, 575-585. https://doi.org/10.3109/17435390.2015.1102981 |
[25] |
Xia, Y., Lee, K., Li, N., Corbett, D., Mendoza, L. and Frangogiannis, N.G. (2008) Characterization of the Inflammatory and Fibrotic Response in a Mouse Model of Cardiac Pressure Overload. Histochemistry and Cell Biology, 131, 471-481. https://doi.org/10.1007/s00418-008-0541-5 |
[26] |
Curtis, T.M., Williamson, R. and Depledge, M.H. (2001) The Initial Mode of Action of Copper on the Cardiac Physiology of the Blue Mussel, Mytilus edulis. Aquatic Toxicology, 52, 29-38. https://doi.org/10.1016/s0166-445x(00)00135-1 |
[27] |
Ferramola, M.L., Pérez Díaz, M.F.F., Honoré, S.M., Sánchez, S.S., Antón, R.I., Anzulovich, A.C., et al. (2012) Cadmium-Induced Oxidative Stress and Histological Damage in the Myocardium. Effects of a Soy-Based Diet. Toxicology and Applied Pharmacology, 265, 380-389. https://doi.org/10.1016/j.taap.2012.09.009 |
[28] |
Chou, S., Lin, H., Chen, S., Tai, Y., Jung, S., Ko, F., et al. (2023) Cadmium Exposure Induces Histological Damage and Cytotoxicity in the Cardiovascular System of Mice. Food and Chemical Toxicology, 175, Article ID: 113740. https://doi.org/10.1016/j.fct.2023.113740 |
[29] |
Ghosh, K. and N, I. (2018) Cadmium Treatment Induces Echinocytosis, DNA Damage, Inflammation, and Apoptosis in Cardiac Tissue of Albino Wistar Rats. Environmental Toxicology and Pharmacology, 59, 43-52. https://doi.org/10.1016/j.etap.2018.02.009 |
[30] |
Monteiro, D.A., Taylor, E.W., Rantin, F.T. and Kalinin, A.L. (2017) Impact of Waterborne and Trophic Mercury Exposures on Cardiac Function of Two Ecologically Distinct Neotropical Freshwater Fish Brycon amazonicus and Hoplias malabaricus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 201, 26-34. https://doi.org/10.1016/j.cbpc.2017.09.004 |
[31] |
Moreira, C. (2003) Effects of Mercury on Myosin Atpase in the Ventricular Myocardium of the Rat. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 135, 269-275. https://doi.org/10.1016/s1532-0456(03)00110-8 |
[32] |
Vornanen, M., Shiels, H.A. and Farrell, A.P. (2002) Plasticity of Excitation-Contraction Coupling in Fish Cardiac Myocytes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132, 827-846. https://doi.org/10.1016/s1095-6433(02)00051-x |
[33] |
Nusier, M., Shah, A. and Dhalla, N. (2021) Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport. Physiological Research, 70, S443-S470. https://doi.org/10.33549/physiolres.934805 |
[34] |
Arbi, S., Bester, M.J., Pretorius, L. and Oberholzer, H.M. (2021) Adverse Cardiovascular Effects of Exposure to Cadmium and Mercury Alone and in Combination on the Cardiac Tissue and Aorta of Sprague-Dawley Rats. Journal of Environmental Science and Health, Part A, 56, 609-624. https://doi.org/10.1080/10934529.2021.1899534 |