[1] |
Brenner, M.B., McLean, J., Dialynas, D.P., Strominger, J.L., Smith, J.A., Owen, F.L., et al. (1986) Identification of a Putative Second T-Cell Receptor. Nature, 322, 145-149. https://doi.org/10.1038/322145a0 |
[2] |
Bettin, L., Darbellay, J., van Kessel, J., Scruten, E., Napper, S. and Gerdts, V. (2023) Distinct, Age-Dependent TLR7/8 Signaling Responses in Porcine Gamma-Delta T Cells. Molecular Immunology, 160, 80-94. https://doi.org/10.1016/j.molimm.2023.06.012 |
[3] |
Abou-El-Hassan, H., Rezende, R.M., Izzy, S., Gabriely, G., Yahya, T., Tatematsu, B.K., et al. (2023) Vγ1 and Vγ4 Gamma-Delta T Cells Play Opposing Roles in the Immunopathology of Traumatic Brain Injury in Males. Nature Communications, 14, Article No. 4286. https://doi.org/10.1038/s41467-023-39857-9 |
[4] |
Wang, C.Q., Lim, P.Y. and Tan, A.H. (2024) Gamma/Delta T Cells as Cellular Vehicles for Anti-Tumor Immunity. Frontiers in Immunology, 14, Article 1282758. https://doi.org/10.3389/fimmu.2023.1282758 |
[5] |
Costa, G.P., Mensurado, S. and Silva-Santos, B. (2023) Therapeutic Avenues for γδ T Cells in Cancer. Journal for ImmunoTherapy of Cancer, 11, e007955. https://doi.org/10.1136/jitc-2023-007955 |
[6] |
Li, J., Cao, Y., Liu, Y., Yu, L., Zhang, Z., Wang, X., et al. (2024) Multiomics Profiling Reveals the Benefits of Gamma-Delta (γδ) T Lymphocytes for Improving the Tumor Microenvironment, Immunotherapy Efficacy and Prognosis in Cervical Cancer. Journal for ImmunoTherapy of Cancer, 12, e008355. https://doi.org/10.1136/jitc-2023-008355 |
[7] |
Rao, A., Agrawal, A., Borthakur, G., Battula, V.L. and Maiti, A. (2024) Gamma Delta T Cells in Acute Myeloid Leukemia: Biology and Emerging Therapeutic Strategies. Journal for ImmunoTherapy of Cancer, 12, e007981. https://doi.org/10.1136/jitc-2023-007981 |
[8] |
Paul, S., Shilpi, and Lal, G. (2014) Role of Gamma-Delta (γδ) T Cells in Autoimmunity. Journal of Leukocyte Biology, 97, 259-271. https://doi.org/10.1189/jlb.3ru0914-443r |
[9] |
Pisetsky, D.S. (2023) Pathogenesis of Autoimmune Disease. Nature Reviews Nephrology, 19, 509-524. https://doi.org/10.1038/s41581-023-00720-1 |
[10] |
Lichtiger, A., Fadaei, G. and Tagoe, C.E. (2024) Autoimmune Thyroid Disease and Rheumatoid Arthritis: Where the Twain Meet. Clinical Rheumatology, 43, 895-905. https://doi.org/10.1007/s10067-024-06888-6 |
[11] |
Di Matteo, A., Bathon, J.M. and Emery, P. (2023) Rheumatoid Arthritis. The Lancet, 402, 2019-2033. https://doi.org/10.1016/s0140-6736(23)01525-8 |
[12] |
Jang, S., Kwon, E. and Lee, J.J. (2022) Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. International Journal of Molecular Sciences, 23, Article 905. https://doi.org/10.3390/ijms23020905 |
[13] |
Buchanan, W.W., Kean, C.A., Kean, W.F. and Rainsford, K.D. (2023) Rheumatoid Arthritis. Inflammopharmacology, 32, 3-11. https://doi.org/10.1007/s10787-023-01221-0 |
[14] |
Bank, I. (2020) The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases. Cells, 9, Article 462. https://doi.org/10.3390/cells9020462 |
[15] |
Zhu, T., Zhu, L., Sheng, C., Wu, D., Gu, Q., Jiang, Z., et al. (2024) Hyperactivation and Enhanced Cytotoxicity of Reduced CD8+ Gamma Delta T Cells in the Intestine of Patients with Crohn’s Disease Correlates with Disease Activity. BMC Immunology, 25, Article No. 15. https://doi.org/10.1186/s12865-024-00606-2 |
[16] |
Roark, C.L., French, J.D., Taylor, M.A., Bendele, A.M., Born, W.K. and O’Brien, R.L. (2007) Exacerbation of Collagen-Induced Arthritis by Oligoclonal, Il-17-Producing γδ T Cells. The Journal of Immunology, 179, 5576-5583. https://doi.org/10.4049/jimmunol.179.8.5576 |
[17] |
Ito, Y., Usui, T., Kobayashi, S., Iguchi‐Hashimoto, M., Ito, H., Yoshitomi, H., et al. (2009) Gamma/Delta T Cells Are the Predominant Source of Interleukin‐17 in Affected Joints in Collagen‐induced Arthritis, but Not in Rheumatoid Arthritis. Arthritis & Rheumatism, 60, 2294-2303. https://doi.org/10.1002/art.24687 |
[18] |
Peterman, G.M., Spencer, C., Sperling, A.I. and Bluestone, J.A. (1993) Role of Gamma Delta T Cells in Murine Collagen-Induced Arthritis. The Journal of Immunology, 151, 6546-6558. https://doi.org/10.4049/jimmunol.151.11.6546 |
[19] |
Jakimovski, D., Bittner, S., Zivadinov, R., Morrow, S.A., Benedict, R.H., Zipp, F., et al. (2024) Multiple Sclerosis. The Lancet, 403, 183-202. https://doi.org/10.1016/s0140-6736(23)01473-3 |
[20] |
Zarobkiewicz, M.K., Kowalska, W., Roliński, J. and Bojarska-Junak, A.A. (2019) γδ T Lymphocytes in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Journal of Neuroimmunology, 330, 67-73. https://doi.org/10.1016/j.jneuroim.2019.02.009 |
[21] |
Maimaitijiang, G., Shinoda, K., Nakamura, Y., Masaki, K., Matsushita, T., Isobe, N., et al. (2018) Association of Decreased Percentage of Vδ2+Vγ9+ γδ T Cells with Disease Severity in Multiple Sclerosis. Frontiers in Immunology, 9, Article 748. https://doi.org/10.3389/fimmu.2018.00748 |
[22] |
Freedman, M.S., D’Souza, S. and Antel, J.P. (1997) γδ T-Cell-Human Glial Cell Interactions. I. in vitro Induction of γδ T-Cell Expansion by Human Glial Cells. Journal of Neuroimmunology, 74, 135-142. https://doi.org/10.1016/s0165-5728(96)00217-2 |
[23] |
Wohler, J.E., Smith, S.S. and Barnum, S.R. (2009) γδ T Cells: The Overlooked T‐Cell Subset in Demyelinating Disease. Journal of Neuroscience Research, 88, 1-6. https://doi.org/10.1002/jnr.22176 |
[24] |
Malik, S., Want, M.Y. and Awasthi, A. (2016) The Emerging Roles of Gamma-Delta T Cells in Tissue Inflammation in Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 7, Article 14. https://doi.org/10.3389/fimmu.2016.00014 |
[25] |
Odyniec, A., Szczepanik, M., Mycko, M.P., Stasiolek, M., Raine, C.S. and Selmaj, K.W. (2004) γδ T Cells Enhance the Expression of Experimental Autoimmune Encephalomyelitis by Promoting Antigen Presentation and IL-12 Production. The Journal of Immunology, 173, 682-694. https://doi.org/10.4049/jimmunol.173.1.682 |
[26] |
Blink, S.E., Caldis, M.W., Goings, G.E., Harp, C.T., Malissen, B., Prinz, I., et al. (2014) γδ T Cell Subsets Play Opposing Roles in Regulating Experimental Autoimmune Encephalomyelitis. Cellular Immunology, 290, 39-51. https://doi.org/10.1016/j.cellimm.2014.04.013 |
[27] |
Kobayashi, Y., Kawai, K., Ito, K., Honda, H., Sobue, G. and Yoshikai, Y. (1997) Aggravation of Murine Experimental Allergic Encephalomyelitis by Administration of T-Cell Receptor γδ-Specific Antibody. Journal of Neuroimmunology, 73, 169-174. https://doi.org/10.1016/s0165-5728(96)00187-7 |
[28] |
Gordon, H., Burisch, J., Ellul, P., Karmiris, K., Katsanos, K., Allocca, M., et al. (2023) ECCO Guidelines on Extraintestinal Manifestations in Inflammatory Bowel Disease. Journal of Crohn’s and Colitis, 18, 1-37. https://doi.org/10.1093/ecco-jcc/jjad108 |
[29] |
Dart, R.J., Zlatareva, I., Vantourout, P., Theodoridis, E., Amar, A., Kannambath, S., et al. (2023) Conserved γδ T Cell Selection by BTNL Proteins Limits Progression of Human Inflammatory Bowel Disease. Science, 381, eadh0301. https://doi.org/10.1126/science.adh0301 |
[30] |
McVay, L.D., Li, B., Biancaniello, R., Creighton, M.A., Bachwich, D., Lichtenstein, G., et al. (1997) Changes in Human Mucosal γδ T Cell Repertoire and Function Associated with the Disease Process in Inflammatory Bowel Disease. Molecular Medicine, 3, 183-203. https://doi.org/10.1007/bf03401672 |
[31] |
Catalan-Serra, I., Sandvik, A.K., Bruland, T. and Andreu-Ballester, J.C. (2017) Gammadelta T Cells in Crohn’s Disease: A New Player in the Disease Pathogenesis? Journal of Crohn’s and Colitis, 11, 1135-1145. https://doi.org/10.1093/ecco-jcc/jjx039 |
[32] |
Kadivar, M., Petersson, J., Svensson, L. and Marsal, J. (2016) CD8αβ+ γδ T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. The Journal of Immunology, 197, 4584-4592. https://doi.org/10.4049/jimmunol.1601146 |
[33] |
Hoffmann, J.C. (2001) Role of T Lymphocytes in Rat 2,4,6-Trinitrobenzene Sulphonic Acid (TNBS) Induced Colitis: Increased Mortality after γδ T Cell Depletion and No Effect of αβ T Cell Depletion. Gut, 48, 489-495. https://doi.org/10.1136/gut.48.4.489 |
[34] |
Sun, X., Cai, Y., Fleming, C., Tong, Z., Wang, Z., Ding, C., et al. (2017) Innate γδT17 Cells Play a Protective Role in DSS-Induced Colitis via Recruitment of Gr-1+CD11b+ Myeloid Suppressor Cells. OncoImmunology, 6, e1313369. https://doi.org/10.1080/2162402x.2017.1313369 |
[35] |
Tampa, M., Mitran, M.I., Mitran, C.I., Matei, C. and Georgescu, S.R. (2024) Psoriasis: What Is New in Markers of Disease Severity? Medicina, 60, Article 337. https://doi.org/10.3390/medicina60020337 |
[36] |
Hawkes, J.E., Yan, B.Y., Chan, T.C. and Krueger, J.G. (2018) Discovery of the IL-23/IL-17 Signaling Pathway and the Treatment of Psoriasis. The Journal of Immunology, 201, 1605-1613. https://doi.org/10.4049/jimmunol.1800013 |
[37] |
Ogawa, E., Sato, Y., Minagawa, A. and Okuyama, R. (2017) Pathogenesis of Psoriasis and Development of Treatment. The Journal of Dermatology, 45, 264-272. https://doi.org/10.1111/1346-8138.14139 |
[38] |
Zhou, J., Zhang, J., Tao, L., Peng, K., Zhang, Q., Yan, K., et al. (2022) Up-Regulation of BTN3A1 on CD14+ Cells Promotes Vγ9vδ2 T Cell Activation in Psoriasis. Proceedings of the National Academy of Sciences, 119, e2117523119. https://doi.org/10.1073/pnas.2117523119 |
[39] |
Laggner, U., Di Meglio, P., Perera, G.K., Hundhausen, C., Lacy, K.E., Ali, N., et al. (2011) Identification of a Novel Proinflammatory Human Skin-Homing Vγ9Vδ2 T Cell Subset with a Potential Role in Psoriasis. The Journal of Immunology, 187, 2783-2793. https://doi.org/10.4049/jimmunol.1100804 |
[40] |
Pantelyushin, S., Haak, S., Ingold, B., Kulig, P., Heppner, F.L., Navarini, A.A., et al. (2012) Rorγt+ Innate Lymphocytes and γδ T Cells Initiate Psoriasiform Plaque Formation in Mice. Journal of Clinical Investigation, 122, 2252-2256. https://doi.org/10.1172/jci61862 |
[41] |
Mabuchi, T., Takekoshi, T. and Hwang, S.T. (2011) Epidermal CCR6+ γδ T Cells Are Major Producers of IL-22 and IL-17 in a Murine Model of Psoriasiform Dermatitis. The Journal of Immunology, 187, 5026-5031. https://doi.org/10.4049/jimmunol.1101817 |
[42] |
Zhang, S., Zhang, J., Yu, J., Chen, X., Zhang, F., Wei, W., et al. (2021) Hyperforin Ameliorates Imiquimod-Induced Psoriasis-Like Murine Skin Inflammation by Modulating IL-17A-Producing γδ T Cells. Frontiers in Immunology, 12, Article 635076. https://doi.org/10.3389/fimmu.2021.635076 |
[43] |
Li, M., Cheng, H., Tian, D., Yang, L., Du, X., Pan, Y., et al. (2022) D-Mannose Suppresses γδ T Cells and Alleviates Murine Psoriasis. Frontiers in Immunology, 13, Article 840755. https://doi.org/10.3389/fimmu.2022.840755 |
[44] |
Siegel, C.H. and Sammaritano, L.R. (2024) Systemic Lupus Erythematosus. JAMA, 331, 1480-1491. https://doi.org/10.1001/jama.2024.2315 |
[45] |
Koga, T., Endo, Y., Umeda, M., Sato, T., Mizunoo, Y., Furukawa, K., et al. (2020) Reduction in the Percentage of Circulating Variable Delta 2 T Cells in Systemic Lupus Erythematosus. Clinical Immunology, 220, Article 108577. https://doi.org/10.1016/j.clim.2020.108577 |
[46] |
Lu, Z., Su, D., Wang, D., Li, X., Feng, X. and Sun, L. (2013) Elevated Apoptosis and Impaired Proliferation Contribute to Downregulated Peripheral γδ T Cells in Patients with Systemic Lupus Erythematosus. Clinical and Developmental Immunology, 2013, Article 405395. https://doi.org/10.1155/2013/405395 |
[47] |
Wang, L., Kang, N., Zhou, J., Guo, Y., Zhang, X., Cui, L., et al. (2012) Downregulation of CD94/NKG2A Inhibitory Receptor on Decreased γδ T Cells in Patients with Systemic Lupus Erythematosus. Scandinavian Journal of Immunology, 76, 62-69. https://doi.org/10.1111/j.1365-3083.2012.02705.x |
[48] |
Balint, G., Watson Buchanan, W., Kean, C.A., Kean, W. and Rainsford, K.D. (2023) Sjögren’s Syndrome. Inflammopharmacology, 32, 37-43. https://doi.org/10.1007/s10787-023-01222-z |
[49] |
Gerli, R., Agea, E., Muscat, C., et al. (1993) Functional Characterization of T Cells Bearing the Gamma/Delta T-Cell Receptor in Patients with Primary Sjögren’s Syndrome. Clinical and Experimental Rheumatology, 11, 295-299. |
[50] |
Lamour, A., Smith, M.D., Lydyard, P.M. and Youinou, P.Y. (1995) The Majority of FcγRIII-Positive γδT Cells Do Not Express HLA-DR in Patients with Primary Sjögren’s Syndrome. Immunology Letters, 45, 153-155. https://doi.org/10.1016/0165-2478(94)00252-m |
[51] |
Alonzo, E.S., Gottschalk, R.A., Das, J., Egawa, T., Hobbs, R.M., Pandolfi, P.P., et al. (2009) Development of Promyelocytic Zinc Finger and ThPOK-Expressing Innate γδ T Cells Is Controlled by Strength of TCR Signaling and Id3. The Journal of Immunology, 184, 1268-1279. https://doi.org/10.4049/jimmunol.0903218 |