病原微生物–植物宿主互作中茉莉酸的多重功能
The Multiple Functions of Jasmonic Acid in the Interaction of Pathogenic Microorganisms and Plant Hosts
DOI: 10.12677/amb.2024.133021, PDF, HTML, XML,    国家科技经费支持
作者: 张明磊, 何亚文:上海交通大学生命科学技术学院,微生物代谢国家重点实验室,教育部代谢与发育科学国际合作联合实验室,上海
关键词: 茉莉酸病原微生物相互作用防御响应Jasmonic Acid (JA) Pathogenic Microorganism Interaction Defense Mechanism
摘要: 茉莉酸是一种重要的植物激素,在植物生长发育和防御响应过程中发挥重要的调节作用。最新研究表明,在病原微生物–植物宿主互作过程中,病原微生物的侵染可以激活植物宿主体内由茉莉酸介导的防御响应。同时病原微生物可以感应茉莉酸信号,通过多种机制操纵植物宿主茉莉酸信号传导途径,增强自身侵染能力,提高致病性。本文首先简述茉莉酸的生物合成途径与信号传导机制,随后介绍茉莉酸在病原细菌、真菌及病毒与植物宿主相互作用过程中的多重作用。这些研究结果有助于系统深入理解病原微生物与植物宿主互作中茉莉酸的多重功能。
Abstract: Jasmonic acid is an important plant hormone that plays a crucial regulatory role in plant growth, development, and defence responses. Latest results indicate that the invasion of pathogenic microorganisms can activate the jasmonic acid defense mechanism of plant hosts. At the same time, pathogenic microorganisms can sense jasmonic acid and manipulate the jasmonic acid signal transduction pathways of plant hosts, thus enhancing their own pathogenicity. In this review, we first briefly describe the biosynthesis and signalling pathways of jasmonic acid, followed by an overview of the research progress on the multiple functions of jasmonic acid in the interaction of various pathogenic bacteria, fungi, and viruses with plant hosts. These findings will provide insights in understanding the roles of jasmonic acid in the interaction between pathogenic microorganisms and plant hosts.
文章引用:张明磊, 何亚文. 病原微生物–植物宿主互作中茉莉酸的多重功能[J]. 微生物前沿, 2024, 13(3): 192-206. https://doi.org/10.12677/amb.2024.133021

1. 引言

茉莉酸(jasmonic acid, JA)是一类植物内源性的脂质类激素,参与植物生长发育调节与生物胁迫应对。JA的发现可以追溯到1962年Demole等从植物香精油中发现了具有芳香味的茉莉酸甲酯(methyl-jasmonate acid, MeJA) [1]。自20世纪80年代起,JA的生理功能和合成机制被逐渐揭示,随后的一系列研究发现JA在植物应对生物胁迫方面发挥着关键作用,被誉为植物应对病原体入侵的“瑞士军刀”[2]-[4]。本文首先简述JA的生物合成途径与信号传导机制,随后重点综述病原微生物–植物宿主相互作用过程中JA所发挥的多重功能。

2. JA在植物与微生物中的生物合成途径与机制

2.1. 植物体内的十八烷和十六烷生物合成途径

JA的生物合成途径在模式植物拟南芥中研究得相对成熟,包括从α-亚麻酸(α-linolenic acid, ALA; 18:3)开始的十八烷途径和从十六碳三烯酸(16:3)开始的十六烷途径(图1),其中前者是更主要的合成途径[5]。两条途径均需要途经叶绿体、过氧化物酶体和细胞质基质三个反应区室。叶绿体是JA合成的第一个反应场所,在十八烷途径中这一阶段由α-亚麻酸–甘油酯(α-linoleic acid glyceride)经磷脂酶(phospholipase, PLA)水解释放出ALA开始,随后ALA经脂氧合酶(lipoxygenase, LOX)、丙二烯氧化合酶(allene oxide synthase, AOS)、丙二烯氧化物环化酶(allene oxide cyclase, AOC)三个酶逐步催化的保守反应步骤生成12-OPDA。12-OPDA在叶绿体包膜定位转运蛋白JASSY和过氧化物酶体ABC-转运蛋白1的作用下移位到过氧化物酶体。在过氧化物酶体中,12-OPDA被OPDA还原酶(OPDA reductase, OPR)还原为OPC-8:0,随后在羧基辅酶A连接酶(acyl-CoA synthetase, ACS)催化下合成OPC-8:0-CoA。OPC-8:0-CoA会历经3次重复的β-氧化最终合成JA,这一过程由β-羟脂酰辅酶A脱氢酶(3-ketoacyl-CoA thiolase, KAT)、烯脂酰辅酶A水合酶(multifunctional protein, MFP)、酰基辅酶A氧化酶(acyl-CoA oxidase, ACX)共同催化完成。

Figure 1. The biosynthesis of jasmonic acid [13]. The two synthetic pathways of JA are the octadecane pathway starting from ALA (18:3) and the hexadecane pathway starting from hexadecyltriaenoic acid (16:3). In the octadecane pathway, chloroplasts are the first reaction place for JA synthesis. In this stage, α-linoleic acid glyceride is hydrolyzed by PLA to release ALA, which is then subjected to a classical core reaction consisting of three enzymes: LOX, AOS, and AOC to generate 12-OPDA. 12-OPDA is translocated to the peroxisome by the action of chloroplast envelope localization transporter JASSY and peroxisome ABC transporter 1. In peroxisomes, 12-OPDA is reduced to OPC-8:0 by OPR, and then OPC-8:0-CoA is synthesized under the catalysis of ACS. OPC-8:0-CoA undergoes three repeated β-oxidation processes to ultimately synthesize JA, which is catalyzed by KAT, MFP, and ACX. In the hexadecane pathway, the reaction product of the chloroplast stage is dnOPDA, which can be catalyzed by OPR3 in peroxisomes to generate OPC-6:0 and join the octadecane pathway. In the cytoplasmic matrix, JA can be catalyzed by a member of the JAR to produce JA-Ile or by JMT to produce MeJA

1. 茉莉酸的生物合成[13]。JA的两条合成途径分别为从ALA (18:3)开始的十八烷途径和从十六碳三烯酸(16:3)开始的十六烷途径。在十八烷途径中第一步是在叶绿体中,α-亚麻酸–甘油酯经PLA水解释放ALA,随后经LOX、AOS、AOC三个酶逐步催化生成12-OPDA。12-OPDA在叶绿体包膜定位转运蛋白JASSY和过氧化物酶体ABC-转运蛋白1的作用下移位到过氧化物酶体。在过氧化物酶体中,12-OPDA被OPR还原为OPC-8:0,随后在ACS催化下合成OPC-8:0-CoA。OPC-8:0-CoA会历经3次β-氧化最终合成JA,这一过程由KAT、MFP、ACX共同催化完成。在十六烷途径中,叶绿体阶段的反应产物为dnOPDA,在过氧化物酶体中可以由OPR3催化生成OPC-6:0汇入十八烷途径。在细胞质基质中,JA可以被JAR催化生成JA-Ile或经JMT催化生成MeJA等衍生物形式

在十六烷途径中,叶绿体阶段的反应产物为脱氧甲基植物二烯酸(deoxymethylated phytodienoic acid, dnOPDA),在过氧化物酶体中可以由OPR3催化生成OPC-6:0汇入十八烷途径。近些年来,非OPR3依赖性途径也被报道,即dnOPDA在过氧化物酶体中反应生成4,5-ddh-JA,随后经OPR2催化生成JA [6]。在细胞质基质中,JA可以被加以多种修饰,最常见的为经荧光素酶超家族成员(jasmonic acid-amido synthetase, JAR)催化生成茉莉酸–异亮氨酸(jasmonic acid-isoleucine, JA-Ile)和经甲基化酶(jasmonic acid carboxyl methyltransferase, JMT)催化生成MeJA,这两种形式是植物体内常见的活性形式。

2.2. 病原微生物中的JA合成与人工异源合成

研究显示,部分病原微生物也具备合成JA的能力。例如,在尖孢镰刀菌(Fusarium oxysporum f. sp. matthiolae)的培养滤液中检测到22种JA及JA相关化合物,其中主要是JA和JA-Ile [7]。龙眼焦腐病菌(Lasiodiplodia theobromae)的培养物中同样可以提取出JA、OPDA等物质,Nabeta等推测其内部具有LOX、AOS、AOC等酶类似活性的蛋白质,JA的合成是来自脂肪酸合成途径的衍生反应[8]。在红蜡蘑(Laccaria laccata)和豆包菌(Pisolithus tinctorius)等物种中也可以观察到JA的生物合成和代谢[9]。侵染拟南芥的两种尖孢镰刀菌F. oxysporum f. sp. matthioli (Fomt)和F. oxysporum f. sp. conglutinanas (Focn)同样可以合成JA、JA-Ile和JA-Leu [10]。有趣的是,JA的合成能力仅在与植物存在相互作用的真菌中报道[11]

此外,中国科学院深圳先进技术研究院罗小舟团队与美国加州大学伯克利分校Keasling团队利用合成生物学的思路,在酿酒酵母(Saccharomyces cerevisiae)中构建出第一条JA异源生物合成路线[12]。通过LOX、AOS等15种代谢酶类的引入、信号肽介导的代谢酶区室化分布设计和全局化代谢改造,工程化的酿酒酵母可以在葡萄糖为碳源的培养条件下完成滴度为19.0 mg/L的JA发酵[12],这为JA的产业化应用提供了前提。

3. 植物体内JA信号传导途径

JA的信号传导途径对于JA在病原微生物–植物宿主相互作用过程中的多重功能具有重要意义,是病原微生物与植物宿主“JA攻防战”的焦点。然而,目前有关病原微生物JA应激响应通路的研究报道少之又少,因此,我们先阐述植物宿主JA信号传导途径的关键部分(图2)。在植物宿主中,JA信号传导途径的重要组分包括冠菌素不敏感蛋白1 (coronatine insensitive 1, COI1)蛋白[14]、COI1型SCF泛素连接酶复合体(the SCFCOI1 ubiquitin E3 ligase, SCFCOI1)复合体[15]、茉莉酮酸酯ZIM结构域蛋白(jasmonate ZIM-domain proteins, JAZ) [16]、髓细胞组织增生蛋白类转录因子(myelocytomatosis proteins, MYC) [17]等,其功能通路受到胞内外多种信号的精确调控[18] [19]。在拟南芥中,JA-lle是JA的主要活性形式,当缺乏外界信号时,JA-Ile的含量处于较低水平,JAZ的含量积累并与MYC结合抑制MYC的功能。当存在外界信号刺激时,COI1识别JA-Ile并与之组成的复合物与JAZ结合,随后通过泛素-26S蛋白酶体途径降解JAZ,被释放后的MYC与中介复合物(mediator 25, MED25)发挥互作进而驱动JA响应基因的表达[20]-[22]

在JA信号传导过程中,JA负调节因子JAZ被认为发挥核心作用[3]。除前述功能外,JAZ还可通过JAZ接头蛋白(novel interactor of JAZ, NINJA)招募转录共抑制子(topless, TPL)来抑制MYC的转录和JA响应基因的表达。该过程中,乙酰转移酶(general control non-derepressible 5, GCN5)和去乙酰化酶(histone deacetylase 6, HDA6)充当了调控JA基因表达的分子开关:静息状态下,GCN5对TPL进行乙酰化修饰,增强TPL与NINJA互作,MYC的活性被抑制,JA响应基因表达关闭;当植物体内JA积累时,HDA6对TPL进行去乙酰化修饰,削弱TPL与NINJA互作,促进TPL与MYC解离,释放JA响应基因的表达[23]

Figure 2. The signalling pathway of jasmonic acid [3]. When there is a lack of external signals, the content of JA-Ile is at a low level, and JAZ binds to MYC to inhibit its function. When there is external signal stimulation, the content of JA-Ile increases and is recognized by COI1. The complex composed of JA-Ile and COI1 binds to JAZ, which is then degraded through the ubiquitin-26S proteasome pathway. The released MYC interacts with MED25 complex, driving the expression of JA responsive genes

2. 茉莉酸的信号传导[3]。当缺乏外界信号时,JA-Ile的含量处于较低水平,JAZ与MYC结合抑制MYC的功能。当存在外界信号刺激时,JA-Ile的含量提高并被COI1识别,JA-Ile和COI1组成的复合物与JAZ结合,随后通过泛素-26S蛋白酶体途径降解JAZ,被释放后的MYC与MED25互作,进而驱动JA响应基因的表达

4. JA在植物宿主抵抗病原微生物侵染过程中的双重作用

4.1. 病原微生物侵染激活或抑制植物宿主JA防御响应

病原细菌、真菌及病毒的侵染可以激活植物宿主的JA防御响应,进而激活免疫反应。水稻黄单胞菌(Xanthomonas oryzae pv. oryzae, Xoo)侵染过程中会抑制水稻中JA合成相关基因OsAOS1的表达,降低内源JA的含量,从而降低水稻抗性[24]。野油菜黄单胞菌(Xanthomonas campestris pv. campestris, Xcc)在侵染十字花科植物过程中则会引起JA含量和JA合成及响应基因表达量的显著上调[25]。值得注意的是,黄单胞菌典型的群体感应信号分子DSF的低浓度(0.1~10 μM)处理可以激活植物JA防御响应,使得抗氧化酶(peroxidase, POD)的活性增加和对Xcc的抵抗力提高,这为理解JA在植物病原细菌互作中的作用和防治十字花科植物黑腐病带来了新思路[25]。在小麦(Triticum aestivum)中,正常条件下JAZ1、NINJA和TPL形成复合物抑制MYC4的转录活性。而当JA响应白粉病菌(Blumeria graminis f. sp. tritici, Bgt)的侵染而积累时,TaJAZ2降解以释放TaMYC4和其他转录因子,导致活性氧(reactive oxygen species, ROS)积累和发病机制相关基因(pathogenesis-related genes, PRs)的表达被抑制,从而增强植物对Bgt的抗性[26]。水稻条纹病毒(rice stripe virus, RSV)的侵染可以提高宿主JA水平,JAZ6降解释放出的茉莉酸响应转录因子JAMYB与Argonaute 18 (AGO18)启动子结合,增强水稻的抗病毒响应机制[27]。然而,也有研究表明部分病毒感染抑制了JA介导的防御响应,增强了植物对病毒的敏感性,如水稻齿叶矮缩病毒(rice ragged stunt virus, RRSV)通过积累miR319抑制JA介导的防御,从而促进水稻病毒感染症状的发展[28]

4.2. 植物宿主通过JA防御响应抵抗病原微生物侵染

JA在多种植物对病原微生物的防御响应中具有不可忽视的重要作用。病原细菌的防御机制中JA的作用是不可或缺的。Brenya等证明提前将拟南芥幼苗暴露在机械胁迫下,可增强JA介导的对坏死性病原菌的抗性[29]。在水稻中,介导组蛋白修饰抑制的LHP1蛋白通过抑制NAC转录因子家族及其靶标BA/SA羧基甲基转移酶1 (brassinosteroids/salicylic acid-carboxylmethyltransferase-1, BSMT1)的表达,促进水杨酸(salicylic acid, SA)的积累,从而抑制JA和乙烯(ethylene, ET)免疫通路,增强对丁香假单胞菌的防御[30]。Loredana等利用番茄OPDA缺失突变体SiOPR3证明JA合成前体OPDA的缺失可以增强番茄对丁香假单胞菌的抗性[31]。水稻通过多种调控方式增强JA防御响应抵抗Xoo,OsVQ13是JA应答性缬氨酸–谷氨酰胺(valine-glutamine, VQ)基序蛋白,通过激活水稻OsMPK6-OsWRKY45信号通路正向调节JA信号,从而调控水稻对白叶枯病的抗性[32]。OsEDS1在调节JA介导的水稻抗白叶枯病中也起着积极的作用[33]。OsPHR2-OsMYC2通路则通过增强OsMYC2的表达以提高JA含量从而增强Xoo抵抗力[34]。柑橘溃疡病菌(Xanthomonas citri subsp. citri)的侵染性与植物JA水平密切相关,壁相关受体样激酶(wall-associated kinase, WAKL08)过表达植株中JA含量、JA生物合成和信号传导基因表达水平均显著升高,提高了柑橘对溃疡病的抗性[35]。越来越多的证据表明JA与植物应对病原真菌侵染有密切联系,这包括甘蓝链格孢菌(Alternaria brassicicola)、灰葡萄孢菌(Botrytis cinerea)、癣囊腔菌(Plectosphaerella cucumerina)、腐霉菌(Pythium spp.)等[3] [36] [37]。拟南芥JA生物合成突变体fad3fad7fad8jar1对甘蓝链格孢菌和寡雄腐霉菌(Pythium irregular)的敏感性明显提高[38]-[40]。JA信号传导突变体coi1-1则更容易被甘蓝链格孢菌,灰葡萄孢菌,癣囊腔菌侵染[38]。玉米的opr7opr8双突变体对腐霉菌表现出极度的敏感性[41]。番茄突变体jai1在根腐病实验中死亡率达到100%,并且对灰葡萄孢菌和镰刀菌极度敏感[42] [43]。JA合成途径的基因缺陷突变体aosdef1以及jar1证实了JA合成突变植株对番茄灰霉病菌、香蕉枯萎病菌和棉花黄萎病菌都表现出高易感性[44]。狭叶烟草(Nicotiana attenuata)的脂肪酶GLA1突变株表现出对烟草疫霉菌(Phytophthora parasitica var. nicotianae)和尖孢镰刀菌的易感性[31]。JA在植物抗病毒防御过程中具有复杂的调节作用,如JA信号传导激活RNA沉默,并与其他植物激素协同促进水稻抗病毒防御,但仍需更多研究工作[27]

4.3. 外源JA处理对植物宿主与病原微生物互作发挥调控作用

JA类物质的外源添加可以极大增强植物的防御能力,这大多体现在真菌病害治理实践中。JA外源处理极大激活了蔷薇(Rosa chinensis)对灰葡萄孢菌的防御[45],并且可以诱导小麦中发病机制相关蛋白(pathogenesis-related proteins) PR4、PR5和PEROX的显著上调,增强小麦对禾谷镰刀菌(Fusarium graminearum)的抗性[46]。外源施加MeJA可以增强梨果实对灰霉病的抗性,同时对梨果实抗青霉病和保鲜也有一定促进[47],也能够促进葡萄果实中几丁质酶、β-1,3-葡聚糖酶和苯丙氨酸解氨酶等抗性物质的积累,并且可以抑制番茄灰霉病菌的孢子萌发、胚芽管生长和菌丝延伸[48],同时可以通过显著上调JA合成和信号传导相关基因增强油菜(Brassica napus)对油菜菌核菌(Sclerotinia sclerotionrum)的抗性和三七(Panax notoginseng)对三七镰刀菌(Fasarium solani) 的抗性[49] [50]。对柑橘果实外源添加MeJA则显著增强PEROX和过氧化氢酶(polyphenol oxidase, PPO)的活性,从而有效抑制了绿霉菌(Penicillium digitatum)和蓝霉菌(Alternaria alternata)的发生[51]。除此之外,本氏烟草(Nicotiana benthamiana)甲基化酶突变株系中MeJA的缺失和MeSA的缺失导致烟草花叶病毒(tobacco mosaic virus, TMV)的易感性显著提高[52]

4.4. 病原微生物感应植物宿主的JA并做出响应

JA在病原微生物与植物宿主相互作用的完整过程应包括四个环节,分别为病原微生物侵染激活或抑制植物宿主的JA防御响应,植物宿主通过JA防御响应抵抗病原微生物侵染,病原微生物对JA信号进行识别和响应及病原微生物通过操纵植物宿主JA防御响应增强自身侵染。然而,就目前的报道而言,其他三个环节均有较为深入的研究,而病原微生物对JA信号进行识别和响应这一环节的相关报道少之又少,仅有冠菌素(coronatine, COR)的合成调控过程中有些许涉及,Ullrich等研究显示COR的合成受到双组分调节因子CorRP的调节且受到温度调节[53]。因此,有关病原微生物如何识别JA信号并做出代谢应激反应的研究是当前的一大空白。

5. 病原微生物通过操纵植物宿主JA防御响应增强自身侵染

5.1. 病原细菌通过多种机制操纵植物宿主的JA防御

多种病原细菌已经进化出劫持植物宿主JA信号通路的机制以增强自身的侵染性。丁香假单胞菌(Pseudomonas syringae)是研究这一问题的模式菌株。丁香假单胞菌通过III型分泌系统效应子(type III secretion system effector protein, T3SE)和冠菌素两条典型的途径应对植物的JA防御响应(图3)。同时,多种病原细菌也被报道参与到植物JA防御响应的调控中。辣椒疮痂病菌(Xanthomonas vesicatoria)的效应子XopH则抑制MYC2的表达从而干扰JA信号[54]。在亚麻假单胞菌(Pseudomonas cannabina pv. alisalensis)、疥链霉菌(Streptomyces scabies)和新西兰亚麻的病原体 (Xanthomonas campestris pv. phormiicola)、柑橘溃疡病菌(Xanthomonas axonopodis pv. citri, Xac),根癌农杆菌(Agrobacterium tumefaciens)等细菌中报道有COR样化合物的产生[55]-[57]。此外,在包括glycineaalisalensisatropurpureaglycineamaculicolamorsprunorumporritomato等多种丁香假单胞菌亚种、青枯菌(Ralstonia solanacearum)、欧文氏菌(Erwinia carotovora subsp. Atroseptica, Eca)、胡萝卜软腐果胶杆菌(Pectobacterium carotovorum subsp. carotovorum)和玉米迪基氏菌(Dickeya sp.)中均鉴定出了参与COR生物合成的基因簇[58]-[61]。下面将着重介绍T3SE和COR两种代表性机制。

5.1.1. III型分泌系统效应子

丁香假单胞菌所分泌用以调控宿主JA信号通路的T3SE主要有3种:1) HopZ1a是由P. syringae pv. tomato (Pst) DC3000分泌的一种乙酰转移酶,可以直接与拟南芥JAZ蛋白相互作用并诱导其乙酰化,促进JAZ降解,从而激活JA信号传导[63] [64];2) HopX1是由P. syringae pv. tabaci (Pta) strain 11528分泌的一种半胱氨酸蛋白酶,以不依赖COI1的方式与JAZ蛋白相互作用并促进JAZ蛋白的降解,可以引发JA介导的对SA依赖性防御响应的抑制,并促进植物对这种丁香假单胞菌的易感性[24];3) AvrB是具有复杂效应的T3SE。在拟南芥中,AvrB以COI1依赖性方式增强JA信号传导[67],这一过程需要拟南芥RPM1相互作用蛋白4 (RPM1-interacting 4, RIN4)的参与[65] [66]。AvrB与RIN4相互作用并以RIN4依赖性方式激活质膜定位的H+-ATP酶(Arabidopsis plasma membrane H+-ATPase, AHA1)。AHA1和AvrB均增强COI1-JAZ相互作用和JAZ蛋白的降解,损害植物对丁香假单胞菌的防御[67]。除了靶向JA信号传导的核心成分外,AvrB还与丝裂原活化蛋白激酶4 (mitogen-activated protein kinase 4, MPK4)相互作用并诱导MPK4磷酸化,并通过热休克蛋白90 (heat shock protein 90, HSP90)的共伴侣RAR1与HSP90结合,最终导致JA信号传导的激活,这一过程也可能通过RIN4但并未得到确认[66]

5.1.2. 冠菌素

COR则是多种丁香假单胞菌如 glycineamaculicolatomato等均可以分泌产生的JA-Ile结构类似物[55],包含冠烷酸(coronamic acid, CMA)和冠菌酸(coronafacic acid, CFA)两个部分,它们通过酰胺键共轭[68]。COR以高亲和力直接与COI1-JAZ受体结合[69]-[72]。COR同样引发JA信号通路激活,这可以抑制病原体应激免疫(pathogen-associated molecular patterns, PAMP)诱导的气孔闭合,抑制植物质体防御,最终抑制SA介导的植物防御来促进细菌感染[53] [73]-[77]。研究显示,COR劫持植物JA信号模块COI1-JAZ2-MYC2/3/4-ANAC19/55/72 [78]并通过JAZ2靶向的MYC2/3/4直接激活SA生物合成酶抑制剂NACsTFs (ANAC19/55/72)的表达,从而劫持JA通路以抑制SA通路[78]。同时,COR还可以激活拟南芥乙烯反应因子(ERFEthylene-responsive factor)基因RAP2.6的转录进一步调控JA-SA-ET的防御网络[47]。值得注意的是,冠菌素在2021年已经获得98%冠菌素原药和0.006%冠菌素可溶液剂两种农药登记证,根据冠菌素使用浓度的不同,可以达到诱导植物防御[79]、脱叶[80]、除草[80]、提高果品质量[81]、增强植物抗逆性[82]等不同效果。

Figure 3. Jasmonic acid signaling pathway in the hijacking of plant hosts by Pseudomonas syringae [62]. HopZ1a interacts with JAZ and induces its acetylation, promoting JAZ degradation and activating JA signal transduction. HopX1 interacts with JAZ protein in a COI1 independent manner and promotes its degradation, which can trigger JA mediated inhibition of SA dependent defense response. AvrB is a T3SE with complex effects. In Arabidopsis, AvrB enhances JA signaling in a COI1 dependent manner, which requires the involvement of RPM1 interacting protein 4 (RIN4). AvrB interacts with RIN4 and activates plasma membrane H+-ATPase (AHA1) in a RIN4 dependent manner. AHA1 and AvrB both enhance COI1-JAZ interaction and degradation of JAZ protein. COR binds directly to the COI1-JAZ receptor with high affinity, which also triggers activation of the JA signaling pathway

3. 丁香假单胞菌劫持植物宿主的茉莉酸信号传导途径[62]。HopZ1a与JAZ 相互作用并诱导其乙酰化,促进JAZ降解,从而激活JA信号传导。HopX1以不依赖COI1的方式与JAZ蛋白相互作用并促进JAZ蛋白的降解,可以引发JA介导的对SA依赖性防御响应的抑制。AvrB是具有复杂效应的T3SE。在拟南芥中,AvrB以COI1依赖性方式增强JA信号传导,这一过程需要RIN4的参与。AvrB与RIN4相互作用并以AHA1。AHA1和AvrB均增强COI1-JAZ相互作用和JAZ蛋白的降解。COR以高亲和力直接与COI1-JAZ受体结合,同样引发JA信号通路激活

5.2. 病原真菌对植物宿主JA防御响应的调控

多种病原真菌也进化出应对植物JA防御的调控机制。尖孢镰刀菌可以劫持JA途径以促进植物易感性:coi1myc2pft1/med25等拟南芥突变体表现出对这种病原体的抗性增加[83]-[85]。毛果杨(Populus trichocarpa)的共生真菌双色蜡蘑(Laccaria bicolor)可以分泌效应子MiSSP7蛋白稳定JAZ蛋白,抑制JA信号传导从而增强自身的定植能力[86]。HaRxL44则是拟南芥霜霉病菌(Hyaloperonospora arabidopsidis)的核定位分泌效应子,通过与介质亚基MED19a相互作用和降解来将植物SA的防御响应逆转为JA/ET的防御响应从而增强疾病易感性[87]。大豆疫霉(Phytophthora sojae)通过分泌RXLR类效应子Avh94通过直接相互作用抑制JAZ1/2的降解以抑制JA信号传导[88]。来自稻瘟病菌(Magnaporthe oryzae)的单加氧酶ABM将真菌和植物来源的JA转化为12-OH-JA,以减弱JA信号传导并促进宿主定植[89]。稻瘟病菌中ABM的缺失导致MeJA在真菌中的积累和植物防御的诱导[89]

5.3. 病毒对植物宿主JA防御响应的调控

越来越多的证据表明病毒同样可以劫持JA信号传导,以促进植物的易感性使其自身受益。C2蛋白和其同源的L2蛋白被鉴定为中国番茄黄化曲叶病毒(tomato yellow leaf curl virus, TYLCV)和甜菜曲顶病毒(beet curly top virus, BcTV)的病毒致病因子[90],它们与拟南芥CSN5相互作用并干扰拟南芥CSN5,导致JA介导的防御减弱[91] [92]βC1蛋白则是TYLCV的另一种病毒致病因子,直接与关键的JA信号转录因子MYC2相互作用并抑制JA信号从而调节的萜烯合酶基因的表达,降低宿主对其昆虫载体粉虱(Trialeurodes vaporariorum)的抗性并加速其自身的病毒传播[90] [93] [94]。花椰菜花叶病毒(cauliflower mosaic virus, CaMV)的RNA沉默抑制因子2b蛋白在CaMV感染时抑制JA反应基因的表达,这可能作为诱饵促进桃蚜(Myzus persicae)的活动以促进自身传播[95]-[97]。最近的一篇报道表明,OsNF-YAs家族的基因表达产物通过破坏OsMYCs和OsMED25之间的相互作用,抑制OsMYC2/3的转录活性,从而损害JA介导的抗病毒防御[98]。水稻黑条矮缩病毒(rice black-streaked dwarf virus, RBSDV)编码的P5-1调节SCF泛素连接酶的泛素化活性,并抑制JA信号传导[99]。RSV由褐飞虱(brown rice planthopper, SBPH)传播,是纤细病毒属的典型成员。MeJA处理吸引了SBPHs以水稻植株为食,其中JA缺陷突变体的吸引力不如野生型水稻。这是因为由外壳蛋白诱导的JA通路激活了植物对RSV的防御,同时吸引SBPH进食,从而有利于病毒传播[100]。此外,斐济病毒属、纤细病毒属和弹状病毒属的水稻病毒都具有转录抑制因子,可直接解离OsMED25-OsMYC3复合物,抑制OsMYC3的转录激活,然后与OsJAZ蛋白结合,以有利于病毒感染及其载体摄食活性的方式协同克服JA通路[61]

6. 总结展望

植物宿主利用JA信号介导的生理响应来优化应对病原微生物的防御,而病原微生物则分泌效应蛋白和植物毒素或产生JA类化合物用于调节植物宿主的防御响应。效应蛋白和植物毒素往往靶向宿主植物中的JA信号传导途径,以增强或减弱下游反应的形式提高自身的侵染性和定植能力。目前,有关病原微生物与植物宿主相互作用过程中JA扮演的角色已有部分研究成果,未来的研究在如下几个方面仍有深入探索的必要:

1) 在JA的合成和代谢方面,目前仅发现部分病原真菌具有JA的合成能力。然而,是否有更多的病原微生物可以合成JA或相关化合物仍需要检验。对于有JA合成能力的病原微生物,其具体代谢过程是怎样的?这些问题仍有待探索。

2) 病原微生物在侵染植物宿主过程中,JA防御响应的相关调控效应蛋白或化合物合成酶系会相应的进行基因表达过程并发挥功能。病原微生物是如何感应植物所产生的JA信号的?是否存在相关的受体蛋白或信号传导通路用于感应?以及在感应到信号后是如何做出分子响应的?是否有特异性的外排泵参与此过程?微生物的群体感应系统和双组分感应系统等是否参与?这些问题虽然在丁香假单胞菌中有部分研究[101] [102],但仍有大量工作要做。

3) JA与其他多种植物激素存在复杂的相互作用以共同应对病原微生物入侵。在作用网络中,哪些节点是关键的?不同信号通路之间是如何发挥协同或拮抗作用的?受到哪些胞内外信号的调节?这些问题值得研究解决。

基金项目

国家自然科学基金(31972231, 32172355)。

参考文献

[1] Demole, E., Lederer, E. and Mercier, D. (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de l’essence de jasmin. Helvetica Chimica Acta, 45, 675-685.
https://doi.org/10.1002/hlca.19620450233
[2] Li, C., Xu, M., Cai, X., Han, Z., Si, J. and Chen, D. (2022) Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-offs. International Journal of Molecular Sciences, 23, Article 3945.
https://doi.org/10.3390/ijms23073945
[3] Zhang, L., Zhang, F., Melotto, M., Yao, J. and He, S.Y. (2017) Jasmonate Signaling and Manipulation by Pathogens and Insects. Journal of Experimental Botany, 68, erw478.
https://doi.org/10.1093/jxb/erw478
[4] Yan, C. and Xie, D. (2015) Jasmonate in Plant Defence: Sentinel or Double Agent? Plant Biotechnology Journal, 13, 1233-1240.
https://doi.org/10.1111/pbi.12417
[5] Wasternack, C. and Song, S. (2017) Jasmonates: Biosynthesis, Metabolism, and Signaling by Proteins Activating and Repressing Transcription. Journal of Experimental Botany, 68, 1303-1321.
[6] Chini, A., Monte, I., Zamarreño, A.M., Hamberg, M., Lassueur, S., Reymond, P., et al. (2018) An OPR3-Independent Pathway Uses 4,5-Didehydrojasmonate for Jasmonate Synthesis. Nature Chemical Biology, 14, 171-178.
https://doi.org/10.1038/nchembio.2540
[7] Miersch, O., Bohlmann, H. and Wasternack, C. (1999) Jasmonates and Related Compounds from Fusarium Oxysporum. Phytochemistry, 50, 517-523.
https://doi.org/10.1016/s0031-9422(98)00596-2
[8] Tsukada, K., Takahashi, K. and Nabeta, K. (2010) Biosynthesis of Jasmonic Acid in a Plant Pathogenic Fungus, Lasiodiplodia Theobromae. Phytochemistry, 71, 2019-2023.
https://doi.org/10.1016/j.phytochem.2010.09.013
[9] Miersch, O., Regvar, M. and Wasternack, C. (1999) Metabolism of Jasmonic Acid in Pisolithus Tinctorius Cultures. Phyton, Annales Rei Botanicae, Horn, 39, 243-248.
[10] Cole, S.J., Yoon, A.J., Faull, K.F. and Diener, A.C. (2014) Host Perception of Jasmonates Promotes Infection by Fusarium oxysporum Formae Speciales That Produce Isoleucine‐ and Leucine‐Conjugated Jasmonates. Molecular Plant Pathology, 15, 589-600.
https://doi.org/10.1111/mpp.12117
[11] Chini, A., Gimenez-Ibanez, S., Goossens, A. and Solano, R. (2016) Redundancy and Specificity in Jasmonate Signalling. Current Opinion in Plant Biology, 33, 147-156.
https://doi.org/10.1016/j.pbi.2016.07.005
[12] Tang, H., Lin, S., Deng, J., Keasling, J.D. and Luo, X. (2023) Engineering Yeast for the De Novo Synthesis of Jasmonates. Nature Synthesis, 3, 224-235.
https://doi.org/10.1038/s44160-023-00429-w
[13] Li, M., Yu, G., Cao, C. and Liu, P. (2021) Metabolism, Signaling, and Transport of Jasmonates. Plant Communications, 2, Article 100231.
https://doi.org/10.1016/j.xplc.2021.100231
[14] Yan, J., Yao, R., Chen, L., Li, S., Gu, M., Nan, F., et al. (2018) Dynamic Perception of Jasmonates by the F-Box Protein COI1. Molecular Plant, 11, 1237-1247.
https://doi.org/10.1016/j.molp.2018.07.007
[15] Song, S., Liu, B., Zhai, J., Zhang, Y., Wang, K. and Qi, T. (2021) The Intragenic Suppressor Mutation Leu59Phe Compensates for the Effect of Detrimental Mutations in the Jasmonate Receptor COI1. The Plant Journal, 108, 690-704.
https://doi.org/10.1111/tpj.15464
[16] 魏昕, 刘雨恒, 刘宇阳, 等. 植物JAZ蛋白家族研究进展[J]. 植物生理学报, 2021, 57(5): 1039-1046.
[17] Takaoka, Y., Suzuki, K., Nozawa, A., Takahashi, H., Sawasaki, T. and Ueda, M. (2022) Protein-Protein Interactions between Jasmonate-Related Master Regulator MYC and Transcriptional Mediator MED25 Depend on a Short Binding Domain. Journal of Biological Chemistry, 298, Article 101504.
https://doi.org/10.1016/j.jbc.2021.101504
[18] Shi, R., Yu, J., Chang, X., Qiao, L., Liu, X. and Lu, L. (2023) Recent Advances in Research into Jasmonate Biosynthesis and Signaling Pathways in Agricultural Crops and Products. Processes, 11, Article 736.
https://doi.org/10.3390/pr11030736
[19] Goossens, J., Fernández-Calvo, P., Schweizer, F. and Goossens, A. (2016) Jasmonates: Signal Transduction Components and Their Roles in Environmental Stress Responses. Plant Molecular Biology, 91, 673-689.
https://doi.org/10.1007/s11103-016-0480-9
[20] Fernández-Calvo, P., Chini, A., Fernández-Barbero, G., Chico, J., Gimenez-Ibanez, S., Geerinck, J., et al. (2011) The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses. The Plant Cell, 23, 701-715.
https://doi.org/10.1105/tpc.110.080788
[21] Zhang, F., Yao, J., Ke, J., Zhang, L., Lam, V.Q., Xin, X., et al. (2015) Structural Basis of JAZ Repression of MYC Transcription Factors in Jasmonate Signalling. Nature, 525, 269-273.
https://doi.org/10.1038/nature14661
[22] An, C., Li, L., Zhai, Q., You, Y., Deng, L., Wu, F., et al. (2017) Mediator Subunit MED25 Links the Jasmonate Receptor to Transcriptionally Active Chromatin. Proceedings of the National Academy of Sciences, 114, E8930-E8939.
https://doi.org/10.1073/pnas.1710885114
[23] An, C., Deng, L., Zhai, H., You, Y., Wu, F., Zhai, Q., et al. (2022) Regulation of Jasmonate Signaling by Reversible Acetylation of TOPLESS in Arabidopsis. Molecular Plant, 15, 1329-1346.
https://doi.org/10.1016/j.molp.2022.06.014
[24] Gimenez-Ibanez, S., Boter, M., Fernández-Barbero, G., Chini, A., Rathjen, J.P. and Solano, R. (2014) The Bacterial Effector Hopx1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLOS Biology, 12, e1001792.
https://doi.org/10.1371/journal.pbio.1001792
[25] Zhao, Q., Liu, F., Song, C., Zhai, T., He, Z., Ma, L., et al. (2023) Diffusible Signal Factor Primes Plant Immunity against Xanthomonas campestris pv. campestris (Xcc) via JA Signaling in Arabidopsis and Brassica Oleracea. Frontiers in Cellular and Infection Microbiology, 13, Article 1203582.
https://doi.org/10.3389/fcimb.2023.1203582
[26] Jing, Y., Liu, J., Liu, P., Ming, D. and Sun, J. (2019) Overexpression of TaJAZ1 Increases Powdery Mildew Resistance through Promoting Reactive Oxygen Species Accumulation in Bread Wheat. Scientific Reports, 9, Article No. 5691.
https://doi.org/10.1038/s41598-019-42177-y
[27] Yang, Z., Huang, Y., Yang, J., Yao, S., Zhao, K., Wang, D., et al. (2020) Jasmonate Signaling Enhances RNA Silencing and Antiviral Defense in Rice. Cell Host & Microbe, 28, 89-103.E8.
https://doi.org/10.1016/j.chom.2020.05.001
[28] Zhang, C., Ding, Z., Wu, K., Yang, L., Li, Y., Yang, Z., et al. (2016) Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice. Molecular Plant, 9, 1302-1314.
https://doi.org/10.1016/j.molp.2016.06.014
[29] Brenya, E., Chen, Z., Tissue, D., Papanicolaou, A. and Cazzonelli, C.I. (2020) Prior Exposure of Arabidopsis Seedlings to Mechanical Stress Heightens Jasmonic Acid-Mediated Defense against Necrotrophic Pathogens. BMC Plant Biology, 20, Article No. 548.
https://doi.org/10.1186/s12870-020-02759-9
[30] Ramirez‐Prado, J.S., Latrasse, D., Rodriguez‐Granados, N.Y., Huang, Y., Manza‐Mianza, D., Brik‐Chaouche, R., et al. (2019) The Polycomb Protein LHP1 Regulates Arabidopsis thaliana Stress Responses through the Repression of the MYC2‐Dependent Branch of Immunity. The Plant Journal, 100, 1118-1131.
https://doi.org/10.1111/tpj.14502
[31] Scalschi, L., Llorens, E., García-Agustín, P. and Vicedo, B. (2020) Role of Jasmonic Acid Pathway in Tomato Plant-Pseudomonas syringae Interaction. Plants, 9, Article 136.
https://doi.org/10.3390/plants9020136
[32] Uji, Y., Kashihara, K., Kiyama, H., Mochizuki, S., Akimitsu, K. and Gomi, K. (2019) Jasmonic Acid-Induced VQ-Motif-Containing Protein OsVQ13 Influences the OsWRKY45 Signaling Pathway and Grain Size by Associating with OsMPK6 in Rice. International Journal of Molecular Sciences, 20, Article 2917.
https://doi.org/10.3390/ijms20122917
[33] Ke, Y., Kang, Y., Wu, M., Liu, H., Hui, S., Zhang, Q., et al. (2019) Jasmonic Acid-Involved OsEDS1 Signaling in Rice-Bacteria Interactions. Rice, 12, Article No. 25.
https://doi.org/10.1186/s12284-019-0283-0
[34] Kong, Y., Wang, G., Chen, X., Li, L., Zhang, X., Chen, S., et al. (2021) osPHR2 Modulates Phosphate Starvation‐induced OsMYC2 Signalling and Resistance to Xanthomonas oryzae pv. oryzae. Plant, Cell & Environment, 44, 3432-3444.
https://doi.org/10.1111/pce.14078
[35] Li, Q., Hu, A., Qi, J., Dou, W., Qin, X., Zou, X., et al. (2020) CsWAKl08, a Pathogen-Induced Wall-Associated Receptor-Like Kinase in Sweet Orange, Confers Resistance to Citrus Bacterial Canker via ROS Control and JA Signaling. Horticulture Research, 7, 42.
https://doi.org/10.1038/s41438-020-0263-y
[36] Campos, M.L., Kang, J. and Howe, G.A. (2014) Jasmonate-Triggered Plant Immunity. Journal of Chemical Ecology, 40, 657-675.
https://doi.org/10.1007/s10886-014-0468-3
[37] Thomma, B.P.H.J., Eggermont, K., Penninckx, I.A.M.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A., et al. (1998) Separate Jasmonate-Dependent and Salicylate-Dependent Defense-Response Pathways in Arabidopsis Are Essential for Resistance to Distinct Microbial Pathogens. Proceedings of the National Academy of Sciences, 95, 15107-15111.
https://doi.org/10.1073/pnas.95.25.15107
[38] Stintzi, A., Weber, H., Reymond, P., Browse, J. and Farmer, E.E. (2001) Plant Defense in the Absence of Jasmonic Acid: The Role of Cyclopentenones. Proceedings of the National Academy of Sciences, 98, 12837-12842.
https://doi.org/10.1073/pnas.211311098
[39] McConn, M. and Browse, J. (1996) The Critical Requirement for Linolenic Acid Is Pollen Development, Not Photosynthesis, in an Arabidopsis Mutant. The Plant Cell, 8, 403-416.
https://doi.org/10.2307/3870321
[40] Hu, Y., Jiang, Y., Han, X., Wang, H., Pan, J. and Yu, D. (2017) Jasmonate Regulates Leaf Senescence and Tolerance to Cold Stress: Crosstalk with Other Phytohormones. Journal of Experimental Botany, 68, 1361-1369.
https://doi.org/10.1093/jxb/erx004
[41] Yan, Y., Christensen, S., Isakeit, T., Engelberth, J., Meeley, R., Hayward, A., et al. (2012) Disruption of OPR7 and OPR8 Reveals the Versatile Functions of Jasmonic Acid in Maize Development and Defense. The Plant Cell, 24, 1420-1436.
https://doi.org/10.1105/tpc.111.094151
[42] AbuQamar, S., Chai, M., Luo, H., Song, F. and Mengiste, T. (2008) Tomato Protein Kinase 1b Mediates Signaling of Plant Responses to Necrotrophic Fungi and Insect Herbivory. The Plant Cell, 20, 1964-1983.
https://doi.org/10.1105/tpc.108.059477
[43] Thaler, J.S., Owen, B. and Higgins, V.J. (2004) The Role of the Jasmonate Response in Plant Susceptibility to Diverse Pathogens with a Range of Lifestyles. Plant Physiology, 135, 530-538.
https://doi.org/10.1104/pp.104.041566
[44] Kachroo, A. and Kachroo, P. (2009) Fatty Acid-Derived Signals in Plant Defense. Annual Review of Phytopathology, 47, 153-176.
https://doi.org/10.1146/annurev-phyto-080508-081820
[45] Scalschi, L., Sanmartín, M., Camañes, G., Troncho, P., Sánchez‐Serrano, J.J., García‐Agustín, P., et al. (2014) Silencing of OPR3 in Tomato Reveals the Role of OPDA in Callose Deposition during the Activation of Defense Responses against Botrytis cinerea. The Plant Journal, 81, 304-315.
https://doi.org/10.1111/tpj.12728
[46] Ameye, M., Audenaert, K., De Zutter, N., Steppe, K., Van Meulebroek, L., Vanhaecke, L., et al. (2015) Priming of Wheat with the Green Leaf Volatile Z-3-Hexenyl Acetate Enhances Defense against Fusarium graminearum but Boosts Deoxynivalenol Production. Plant Physiology, 167, 1671-1684.
https://doi.org/10.1104/pp.15.00107
[47] 赵显阳. 外源茉莉酸甲酯(MeJA)对梨果实抗青霉病及其保鲜作用的研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2020.
[48] Jia, H., Zhang, C., Pervaiz, T., Zhao, P., Liu, Z., Wang, B., et al. (2015) Jasmonic Acid Involves in Grape Fruit Ripening and Resistant against Botrytis Cinerea. Functional & Integrative Genomics, 16, 79-94.
https://doi.org/10.1007/s10142-015-0468-6
[49] Liu, D., Zhao, Q., Cui, X., Chen, R., Li, X., Qiu, B., et al. (2019) A Transcriptome Analysis Uncovers Panax Notoginseng Resistance to Fusarium Solani Induced by Methyl Jasmonate. Genes & Genomics, 41, 1383-1396.
https://doi.org/10.1007/s13258-019-00865-z
[50] Wang, Z., Tan, X., Zhang, Z., Gu, S., Li, G. and Shi, H. (2012) Defense to Sclerotinia Sclerotiorum in Oilseed Rape Is Associated with the Sequential Activations of Salicylic Acid Signaling and Jasmonic Acid Signaling. Plant Science, 184, 75-82.
https://doi.org/10.1016/j.plantsci.2011.12.013
[51] Moosa, A., Sahi, S.T., Khan, S.A. and Malik, A.U. (2019) Salicylic Acid and Jasmonic Acid Can Suppress Green and Blue Moulds of Citrus Fruit and Induce the Activity of Polyphenol Oxidase and Peroxidase. Folia Horticulturae, 31, 195-204.
https://doi.org/10.2478/fhort-2019-0014
[52] Zhu, F., Xi, D., Yuan, S., Xu, F., Zhang, D. and Lin, H. (2014) Salicylic Acid and Jasmonic Acid Are Essential for Systemic Resistance against Tobacco mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions®, 27, 567-577.
https://doi.org/10.1094/mpmi-11-13-0349-r
[53] Ullrich, M., Peñaloza-Vázquez, A., Bailey, A.M. and Bender, C.L. (1995) A Modified Two-Component Regulatory System Is Involved in Temperature-Dependent Biosynthesis of the Pseudomonas syringae Phytotoxin Coronatine. Journal of Bacteriology, 177, 6160-6169.
https://doi.org/10.1128/jb.177.21.6160-6169.1995
[54] Blüher, D., Laha, D., Thieme, S., Hofer, A., Eschen-Lippold, L., Masch, A., et al. (2017) A1-Phytase Type III Effector Interferes with Plant Hormone Signaling. Nature Communications, 8, Article No. 2159.
https://doi.org/10.1038/s41467-017-02195-8
[55] Bender, C.L., Alarcón-Chaidez, F. and Gross, D.C. (1999) Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases. Microbiology and Molecular Biology Reviews, 63, 266-292.
https://doi.org/10.1128/mmbr.63.2.266-292.1999
[56] Geng, X., Jin, L., Shimada, M., Kim, M.G. and Mackey, D. (2014) The Phytotoxin Coronatine Is a Multifunctional Component of the Virulence Armament of Pseudomonas syringae. Planta, 240, 1149-1165.
https://doi.org/10.1007/s00425-014-2151-x
[57] Fyans, J.K., Altowairish, M.S., Li, Y. and Bignell, D.R.D. (2015) Characterization of the Coronatine-Like Phytotoxins Produced by the Common Scab Pathogen Streptomyces scabies. Molecular Plant-Microbe Interactions®, 28, 443-454.
https://doi.org/10.1094/mpmi-09-14-0255-r
[58] Bell, K.S., Sebaihia, M., Pritchard, L., Holden, M.T.G., Hyman, L.J., Holeva, M.C., et al. (2004) Genome Sequence of the Enterobacterial Phytopathogen Erwinia carotovora Subsp. Atroseptica and Characterization of Virulence Factors. Proceedings of the National Academy of Sciences, 101, 11105-11110.
https://doi.org/10.1073/pnas.0402424101
[59] Slawiak, M. and Lojkowska, E. (2009) Genes Responsible for Coronatine Synthesis in Pseudomonas syringae Present in the Genome of Soft Rot Bacteria. European Journal of Plant Pathology, 124, 353-361.
https://doi.org/10.1007/s10658-008-9418-7
[60] Cheng, Z., Sun, L., Qi, T., Zhang, B., Peng, W., Liu, Y., et al. (2011) The bHLH Transcription Factor MYC3 Interacts with the Jasmonate ZIM-Domain Proteins to Mediate Jasmonate Response in Arabidopsis. Molecular Plant, 4, 279-288.
https://doi.org/10.1093/mp/ssq073
[61] Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., et al. (2002) Genome Sequence of the Plant Pathogen Ralstonia Solanacearum. Nature, 415, 497-502.
https://doi.org/10.1038/415497a
[62] Gupta, A., Bhardwaj, M. and Tran, L.P. (2020) Jasmonic Acid at the Crossroads of Plant Immunity and Pseudomonas syringae Virulence. International Journal of Molecular Sciences, 21, Article 7482.
https://doi.org/10.3390/ijms21207482
[63] Jiang, S., Yao, J., Ma, K., Zhou, H., Song, J., He, S.Y., et al. (2013) Bacterial Effector Activates Jasmonate Signaling by Directly Targeting JAZ Transcriptional Repressors. PLOS Pathogens, 9, e1003715.
https://doi.org/10.1371/journal.ppat.1003715
[64] Hu, Y., Jiang, L., Wang, F. and Yu, D. (2013) Jasmonate Regulates the INDUCER of CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 Cascade and Freezing Tolerance in Arabidopsis. The Plant Cell, 25, 2907-2924.
https://doi.org/10.1105/tpc.113.112631
[65] He, P., Chintamanani, S., Chen, Z., Zhu, L., Kunkel, B.N., Alfano, J.R., et al. (2004) Activation of a COI1‐Dependent Pathway in Arabidopsis by Pseudomonas syringae Type III Effectors and Coronatine. The Plant Journal, 37, 589-602.
https://doi.org/10.1111/j.1365-313x.2003.01986.x
[66] Cui, H., Wang, Y., Xue, L., Chu, J., Yan, C., Fu, J., et al. (2010) Pseudomonas syringae Effector Protein AvrB Perturbs Arabidopsis Hormone Signaling by Activating MAP Kinase 4. Cell Host & Microbe, 7, 164-175.
https://doi.org/10.1016/j.chom.2010.01.009
[67] Zhou, Z., Wu, Y., Yang, Y., Du, M., Zhang, X., Guo, Y., et al. (2015) An Arabidopsis Plasma Membrane Proton ATPase Modulates JA Signaling and Is Exploited by the Pseudomonas syringae Effector Protein AvrB for Stomatal Invasion. The Plant Cell, 27, 2032-2041.
https://doi.org/10.1105/tpc.15.00466
[68] Brooks, D.M., Hernández-Guzmán, G., Kloek, A.P., Alarcón-Chaidez, F., Sreedharan, A., Rangaswamy, V., et al. (2004) Identification and Characterization of a Well-Defined Series of Coronatine Biosynthetic Mutants of Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions®, 17, 162-174.
https://doi.org/10.1094/mpmi.2004.17.2.162
[69] Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y. and Howe, G.A. (2008) COI1 Is a Critical Component of a Receptor for Jasmonate and the Bacterial Virulence Factor Coronatine. Proceedings of the National Academy of Sciences, 105, 7100-7105.
https://doi.org/10.1073/pnas.0802332105
[70] Melotto, M., Mecey, C., Niu, Y., Chung, H.S., Katsir, L., Yao, J., et al. (2008) A Critical Role of Two Positively Charged Amino Acids in the Jas Motif of Arabidopsis JAZ Proteins in Mediating Coronatine‐ and Jasmonoyl Isoleucine‐Dependent Interactions with the COI1 F‐Box Protein. The Plant Journal, 55, 979-988.
https://doi.org/10.1111/j.1365-313x.2008.03566.x
[71] Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., et al. (2009) The Arabidopsis CORONATINE INSENSITIVE1 Protein Is a Jasmonate Receptor. The Plant Cell, 21, 2220-2236.
https://doi.org/10.1105/tpc.109.065730
[72] Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., et al. (2010) Jasmonate Perception by Inositol-Phosphate-Potentiated COI1-JAZ Co-Receptor. Nature, 468, 400-405.
https://doi.org/10.1038/nature09430
[73] Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., et al. (2015) Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. The Plant Cell, 27, 2814-2828.
https://doi.org/10.1105/tpc.15.00619
[74] Kloek, A.P., Verbsky, M.L., Sharma, S.B., Schoelz, J.E., Vogel, J., Klessig, D.F., et al. (2001) Resistance to Pseudomonas syringae Conferred by an Arabidopsis thaliana Coronatine‐Insensitive (coi1) Mutation Occurs through Two Distinct Mechanisms. The Plant Journal, 26, 509-522.
https://doi.org/10.1046/j.1365-313x.2001.01050.x
[75] Brooks, D.M., Bender, C.L. and Kunkel, B.N. (2005) The Pseudomonas syringae Phytotoxin Coronatine Promotes Virulence by Overcoming Salicylic Acid‐Dependent Defences in Arabidopsis thaliana. Molecular Plant Pathology, 6, 629-639.
https://doi.org/10.1111/j.1364-3703.2005.00311.x
[76] Melotto, M., Underwood, W., Koczan, J., Nomura, K. and He, S.Y. (2006) Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126, 969-980.
https://doi.org/10.1016/j.cell.2006.06.054
[77] Zeng, W. and He, S.Y. (2010) A Prominent Role of the Flagellin Receptor FLAGELLIN-SENSING2 in Mediating Stomatal Response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiology, 153, 1188-1198.
https://doi.org/10.1104/pp.110.157016
[78] Gimenez‐Ibanez, S., Boter, M., Ortigosa, A., García‐Casado, G., Chini, A., Lewsey, M.G., et al. (2016) JAZ2 Controls Stomata Dynamics during Bacterial Invasion. New Phytologist, 213, 1378-1392.
https://doi.org/10.1111/nph.14354
[79] Zheng, X., Spivey, N.W., Zeng, W., Liu, P., Fu, Z.Q., Klessig, D.F., et al. (2012) Coronatine Promotes Pseudomonas syringae Virulence in Plants by Activating a Signaling Cascade That Inhibits Salicylic Acid Accumulation. Cell Host & Microbe, 11, 587-596.
https://doi.org/10.1016/j.chom.2012.04.014
[80] Du, M., Li, Y., Tian, X., Duan, L., Zhang, M., Tan, W., et al. (2014) The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton. PLOS ONE, 9, e97652.
https://doi.org/10.1371/journal.pone.0097652
[81] Zhou, Y., Zhang, M., Li, J., Li, Z., Tian, X. and Duan, L. (2015) Phytotoxin Coronatine Enhances Heat Tolerance via Maintaining Photosynthetic Performance in Wheat Based on Electrophoresis and TOF-MS Analysis. Scientific Reports, 5, Article No. 13870.
https://doi.org/10.1038/srep13870
[82] Duke, S.O. and Dayan, F.E. (2011) Modes of Action of Microbially-Produced Phytotoxins. Toxins, 3, 1038-1064.
https://doi.org/10.3390/toxins3081038
[83] Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., et al. (2004) Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis. The Plant Cell, 16, 3460-3479.
https://doi.org/10.1105/tpc.104.025833
[84] Kidd, B.N., Edgar, C.I., Kumar, K.K., Aitken, E.A., Schenk, P.M., Manners, J.M., et al. (2009) The Mediator Complex Subunit PFT1 Is a Key Regulator of Jasmonate-Dependent Defense in Arabidopsis. The Plant Cell, 21, 2237-2252.
https://doi.org/10.1105/tpc.109.066910
[85] Thatcher, L.F., Manners, J.M. and Kazan, K. (2009) Fusarium oxysporum Hijacks Coi1‐Mediated Jasmonate Signaling to Promote Disease Development in Arabidopsis. The Plant Journal, 58, 927-939.
https://doi.org/10.1111/j.1365-313x.2009.03831.x
[86] Plett, J.M., Daguerre, Y., Wittulsky, S., Vayssières, A., Deveau, A., Melton, S.J., et al. (2014) Effector MISSP7 of the Mutualistic Fungus Laccaria bicolor Stabilizes the Populus JAZ6 Protein and Represses Jasmonic Acid (JA) Responsive Genes. Proceedings of the National Academy of Sciences, 111, 8299-8304.
https://doi.org/10.1073/pnas.1322671111
[87] Caillaud, M., Asai, S., Rallapalli, G., Piquerez, S., Fabro, G. and Jones, J.D.G. (2013) A Downy Mildew Effector Attenuates Salicylic Acid-Triggered Immunity in Arabidopsis by Interacting with the Host Mediator Complex. PLOS Biology, 11, e1001732.
https://doi.org/10.1371/journal.pbio.1001732
[88] Zhao, Y., Yang, B., Xu, H., Wu, J., Xu, Z. and Wang, Y. (2022) The Phytophthora Effector Avh94 Manipulates Host Jasmonic Acid Signaling to Promote Infection. Journal of Integrative Plant Biology, 64, 2199-2210.
https://doi.org/10.1111/jipb.13358
[89] Patkar, R.N., Benke, P.I., Qu, Z., Constance Chen, Y.Y., Yang, F., Swarup, S., et al. (2015) A Fungal Monooxygenase-Derived Jasmonate Attenuates Host Innate Immunity. Nature Chemical Biology, 11, 733-740.
https://doi.org/10.1038/nchembio.1885
[90] Li, R., Weldegergis, B.T., Li, J., Jung, C., Qu, J., Sun, Y., et al. (2014) Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance. The Plant Cell, 26, 4991-5008.
https://doi.org/10.1105/tpc.114.133181
[91] Hind, S.R., Pulliam, S.E., Veronese, P., Shantharaj, D., Nazir, A., Jacobs, N.S., et al. (2011) The COP9 Signalosome Controls Jasmonic Acid Synthesis and Plant Responses to Herbivory and Pathogens. The Plant Journal, 65, 480-491.
https://doi.org/10.1111/j.1365-313x.2010.04437.x
[92] Lozano-Durán, R., Rosas-Díaz, T., Gusmaroli, G., Luna, A.P., Taconnat, L., Deng, X.W., et al. (2011) Geminiviruses Subvert Ubiquitination by Altering CSN-Mediated Derubylation of SCF E3 Ligase Complexes and Inhibit Jasmonate Signaling in Arabidopsis thaliana. The Plant Cell, 23, 1014-1032.
https://doi.org/10.1105/tpc.110.080267
[93] Salvaudon, L., De Morae, C.M., Yang, J., Chua, N. and Mescher, M.C. (2013) Effects of the Virus Satellite Gene βC1 on Host Plant Defense Signaling and Volatile Emission. Plant Signaling & Behavior, 8, e23317.
https://doi.org/10.4161/psb.23317
[94] Yang, J., Iwasaki, M., Machida, C., Machida, Y., Zhou, X. and Chua, N. (2008) βC1, the Pathogenicity Factor of TYLCCNV, Interacts with AS1 to Alter Leaf Development and Suppress Selective Jasmonic Acid Responses. Genes & Development, 22, 2564-2577.
https://doi.org/10.1101/gad.1682208
[95] Lewsey, M.G., Murphy, A.M., MacLean, D., Dalchau, N., Westwood, J.H., Macaulay, K., et al. (2010) Disruption of Two Defensive Signaling Pathways by a Viral RNA Silencing Suppressor. Molecular Plant-Microbe Interactions®, 23, 835-845.
https://doi.org/10.1094/mpmi-23-7-0835
[96] Westwood, J.H., Lewsey, M.G., Murphy, A.M., Tungadi, T., Bates, A., Gilligan, C.A., et al. (2014) Interference with Jasmonic Acid-Regulated Gene Expression Is a General Property of Viral Suppressors of RNA Silencing but Only Partly Explains Virus-Induced Changes in Plant-Aphid Interactions. Journal of General Virology, 95, 733-739.
https://doi.org/10.1099/vir.0.060624-0
[97] Ziebell, H., Murphy, A.M., Groen, S.C., Tungadi, T., Westwood, J.H., Lewsey, M.G., et al. (2011) Cucumber Mosaic Virus and Its 2b RNA Silencing Suppressor Modify Plant-Aphid Interactions in Tobacco. Scientific Reports, 1, Article No. 187.
https://doi.org/10.1038/srep00187
[98] Tan, X., Zhang, H., Yang, Z., Wei, Z., Li, Y., Chen, J., et al. (2022) NF-YA Transcription Factors Suppress Jasmonic Acid-Mediated Antiviral Defense and Facilitate Viral Infection in Rice. PLOS Pathogens, 18, e1010548.
https://doi.org/10.1371/journal.ppat.1010548
[99] He, L., Chen, X., Yang, J., Zhang, T., Li, J., Zhang, S., et al. (2019) Rice Black‐Streaked Dwarf Virus‐Encoded P5‐1 Regulates the Ubiquitination Activity of SCF E3 Ligases and Inhibits Jasmonate Signaling to Benefit Its Infection in Rice. New Phytologist, 225, 896-912.
https://doi.org/10.1111/nph.16066
[100] Han, K., Huang, H., Zheng, H., Ji, M., Yuan, Q., Cui, W., et al. (2020) Rice Stripe Virus Coat Protein Induces the Accumulation of Jasmonic Acid, Activating Plant Defence against the Virus While also Attracting Its Vector to Feed. Molecular Plant Pathology, 21, 1647-1653.
https://doi.org/10.1111/mpp.12995
[101] Huang, J., Yao, C., Sun, Y., Ji, Q. and Deng, X. (2022) Virulence-Related Regulatory Network of Pseudomonas syringae. Computational and Structural Biotechnology Journal, 20, 6259-6270.
https://doi.org/10.1016/j.csbj.2022.11.011
[102] Wang, T., Hua, C. and Deng, X. (2023) C-di-GMP Signaling in Pseudomonas syringae Complex. Microbiological Research, 275, Article 127445.
https://doi.org/10.1016/j.micres.2023.127445

Baidu
map