[1] |
何则, 周彦楠, 刘毅. 2050年中国能源消费结构的系统动力学模拟——基于重点行业的转型情景[J]. 自然资源学报, 2020, 35(11): 2696-2707. |
[2] |
王丹丹. 煤层底板突水危险源动态辨识及危险性动态评价[D]: [博士学位论文]. 徐州: 中国矿业大学, 2021. |
[3] |
孙斌杨, 张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望[J]. 工程地质学报, 2021, 29(4): 985-1001. |
[4] |
董大旻. 建设施工安全生产中的危险源管理研究[D]: [博士学位论文]. 上海: 同济大学, 2007. |
[5] |
Badri, A., Nadeau, S. and Gbodossou, A. (2013) A New Practical Approach to Risk Management for Underground Mining Project in Quebec. Journal of Loss Prevention in the Process Industries, 26, 1145-1158. https://doi.org/10.1016/j.jlp.2013.04.014 |
[6] |
Domingues, M.S.Q., Baptista, A.L.F. and Diogo, M.T. (2017) Engineering Complex Systems Applied to Risk Management in the Mining Industry. International Journal of Mining Science and Technology, 27, 611-616. https://doi.org/10.1016/j.ijmst.2017.05.007 |
[7] |
Mahdevari, S., Shahriar, K. and Esfahanipour, A. (2014) Human Health and Safety Risks Management in Underground Coal Mines Using Fuzzy Topsis. Science of The Total Environment, 488, 85-99. https://doi.org/10.1016/j.scitotenv.2014.04.076 |
[8] |
Ozdemir, A. (2011) GIS-based Groundwater Spring Potential Mapping in the Sultan Mountains (Konya, Türkiye) Using Frequency Ratio, Weights of Evidence and Logistic Regression Methods and Their Comparison. Journal of Hydrology, 411, 290-308. https://doi.org/10.1016/j.jhydrol.2011.10.010 |
[9] |
Yin, H., Shi, Y., Niu, H., Xie, D., Wei, J., Lefticariu, L., et al. (2018) A GIS-Based Model of Potential Groundwater Yield Zonation for a Sandstone Aquifer in the Juye Coalfield, Shangdong, China. Journal of Hydrology, 557, 434-447. https://doi.org/10.1016/j.jhydrol.2017.12.043 |
[10] |
Lee, S., Kim, Y. and Oh, H. (2012) Application of a Weights-of-Evidence Method and GIS to Regional Groundwater Productivity Potential Mapping. Journal of Environmental Management, 96, 91-105. https://doi.org/10.1016/j.jenvman.2011.09.016 |
[11] |
Wu, Q., Liu, Y., Luo, L., Liu, S., Sun, W. and Zeng, Y. (2015) Quantitative Evaluation and Prediction of Water Inrush Vulnerability from Aquifers Overlying Coal Seams in Donghuantuo Coal Mine, China. Environmental Earth Sciences, 74, 1429-1437. https://doi.org/10.1007/s12665-015-4132-1 |
[12] |
Wu, Q., Liu, Y., Wu, X., Liu, S., Sun, W. and Zeng, Y. (2016) Assessment of Groundwater Inrush from Underlying Aquifers in Tunbai Coal Mine, Shanxi Province, China. Environmental Earth Sciences, 75, Article No. 737. https://doi.org/10.1007/s12665-016-5542-4 |
[13] |
Wu, Q., Xu, H. and Pang, W. (2007) GIS and ANN Coupling Model: An Innovative Approach to Evaluate Vulnerability of Karst Water Inrush in Coalmines of North China. Environmental Geology, 54, 937-943. https://doi.org/10.1007/s00254-007-0887-3 |
[14] |
Wu, Q., Zhou, W., Wang, J. and Xie, S. (2008) Prediction of Groundwater Inrush into Coal Mines from Aquifers Underlying the Coal Seams in China: Application of Vulnerability Index Method to Zhangcun Coal Mine, China. Environmental Geology, 57, 1187-1195. https://doi.org/10.1007/s00254-008-1415-9 |
[15] |
靳德武, 陈健鹏, 王延福, 等. 煤层底板突水预报人工神经网络系统的研究[J]. 西安科技学院学报, 2000, 20(3): 214-217. |
[16] |
施龙青, 张荣遨, 韩进, 等. 基于熵权法-层次分析法耦合赋权的多源信息融合突水危险性评价[J]. 河南理工大学学报(自然科学版), 2020, 39(3): 17-25. |
[17] |
刘江明. 基于分形理论和层次分析法的岩溶富水规律及底板突水危险性评价[D]: [硕士学位论文]. 焦作: 河南理工大学, 2012. |
[18] |
李杨杨, 张士川, 孙煕震, 等. 煤层采动底板突水演变过程可视化试验平台研制与试验研究[J]. 煤炭学报, 2021, 46(11): 3515-3524. |
[19] |
刘伟韬, 孙茜, 徐百超. 基于GIS及主成分熵权法的底板突水危险性评价[J]. 矿业研究与开发, 2020, 40(11): 83-88. |
[20] |
武强, 张志龙, 马积福. 煤层底板突水评价的新型实用方法Ⅰ——主控指标体系的建设[J]. 煤炭学报, 2007, 32(1): 42-47. |
[21] |
Naghibi, S.A., Moghaddam, D.D., Kalantar, B., Pradhan, B. and Kisi, O. (2017) A Comparative Assessment of GIS-Based Data Mining Models and a Novel Ensemble Model in Groundwater Well Potential Mapping. Journal of Hydrology, 548, 471-483. https://doi.org/10.1016/j.jhydrol.2017.03.020 |
[22] |
Liu, S., Li, W., Qiao, W., Li, X., Wang, Q. and He, J. (2019) Zoning Method for Mining-Induced Environmental Engineering Geological Patterns Considering the Degree of Influence of Mining Activities on Phreatic Aquifer. Journal of Hydrology, 578, Article 124020. https://doi.org/10.1016/j.jhydrol.2019.124020 |
[23] |
Tzampoglou, P. and Loupasakis, C. (2017) Mining Geohazards Susceptibility and Risk Mapping: The Case of the Amyntaio Open-Pit Coal Mine, West Macedonia, Greece. Environmental Earth Sciences, 76, Article No. 542. https://doi.org/10.1007/s12665-017-6866-4 |
[24] |
Rahmati, O., Pourghasemi, H.R. and Melesse, A.M. (2016) Application of GIS-Based Data Driven Random Forest and Maximum Entropy Models for Groundwater Potential Mapping: A Case Study at Mehran Region, Iran. CATENA, 137, 360-372. https://doi.org/10.1016/j.catena.2015.10.010 |
[25] |
Chowdary, V.M., Chakraborthy, D., Jeyaram, A., Murthy, Y.V.N.K., Sharma, J.R. and Dadhwal, V.K. (2013) Multi-criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS. Water Resources Management, 27, 3555-3571. https://doi.org/10.1007/s11269-013-0364-6 |
[26] |
Vu, T.T.H., Tian, G., Khan, N., Zada, M., Zhang, B. and Nguyen, T.V. (2019) Evaluating the International Competitiveness of Vietnam Wood Processing Industry by Combining the Variation Coefficient and the Entropy Method. Forests, 10, Article 901. https://doi.org/10.3390/f10100901 |
[27] |
Aherwar, A., Pruncu, C.I. and Mia, M. (2021) Optimal Design Based on Fabricated SIC/B4C/Porcelain Filled Aluminium Alloy Matrix Composite Using Hybrid AHP/CRITIC-COPRAS Approach. Silicon, 14, 603-615. https://doi.org/10.1007/s12633-020-00916-1 |
[28] |
李博, 武强. 煤层底板突水危险性变权评价理论及其工程应用[J]. 应用基础与工程科学学报, 2017, 25(3): 500-508. |
[29] |
李博. 基于变权理论的煤层底板突水脆弱性评价[D]: [博士学位论文]. 北京: 中国矿业大学(北京), 2014. |