[1] |
Kumar, M., Olajire Oyedun, A. and Kumar, A. (2018) A Review on the Current Status of Various Hydrothermal Technologies on Biomass Feedstock. Renewable and Sustainable Energy Reviews, 81, 1742-1770. https://doi.org/10.1016/j.rser.2017.05.270 |
[2] |
Guo, Y., Yeh, T., Song, W., Xu, D. and Wang, S. (2015) A Review of Bio-Oil Production from Hydrothermal Liquefaction of Algae. Renewable and Sustainable Energy Reviews, 48, 776-790. https://doi.org/10.1016/j.rser.2015.04.049 |
[3] |
曲磊, 崔翔, 杨海平, 等. 微藻水热液化支取生物油的研究进展[J]. 化工进展, 2018, 37(8): 2962-2968. |
[4] |
Hu, Y., Gong, M., Feng, S., Xu, C. and Bassi, A. (2019) A Review of Recent Developments of Pre-Treatment Technologies and Hydrothermal Liquefaction of Microalgae for Bio-Crude Oil Production. Renewable and Sustainable Energy Reviews, 101, 476-492. https://doi.org/10.1016/j.rser.2018.11.037 |
[5] |
Bassoli, S.C., Fonseca, Y.A., Wandurrage, H.J.L., Baeta, B. and Amaral, M. (2023) Research Progress, Trends, and Future Prospects on Hydrothermal Liquefaction of Algae for Biocrude Production: A Bibliometric Analysis. Biomass Conversion and Biorefinery, 2, 16 p. https://doi.org/10.1007/s13399-023-03905-7 |
[6] |
Leng, L., Zhang, W., Peng, H., Li, H., Jiang, S. and Huang, H. (2020) Nitrogen in Bio-Oil Produced from Hydrothermal Liquefaction of Biomass: A Review. Chemical Engineering Journal, 401, Article ID: 126030. https://doi.org/10.1016/j.cej.2020.126030 |
[7] |
Zhao, B., Wang, Z., Liu, Z. and Yang, X. (2016) Two-Stage Upgrading of Hydrothermal Algae Biocrude to Kerosene-Range Biofuel. Green Chemistry, 18, 5254-5265. https://doi.org/10.1039/c6gc01413e |
[8] |
Tang, S., Shi, Z., Tang, X. and Yang, X. (2019) Hydrotreatment of Biocrudes Derived from Hydrothermal Liquefaction and Lipid Extraction of the High-Lipid Scenedesmus. Green Chemistry, 21, 3413-3423. https://doi.org/10.1039/c9gc00673g |
[9] |
Saber, M., Nakhshiniev, B. and Yoshikawa, K. (2016) A Review of Production and Upgrading of Algal Bio-Oil. Renewable and Sustainable Energy Reviews, 58, 918-930. https://doi.org/10.1016/j.rser.2015.12.342 |
[10] |
Watson, J., Wang, T., Si, B., Chen, W., Aierzhati, A. and Zhang, Y. (2020) Valorization of Hydrothermal Liquefaction Aqueous Phase: Pathways Towards Commercial Viability. Progress in Energy and Combustion Science, 77, Article ID: 100819. https://doi.org/10.1016/j.pecs.2019.100819 |
[11] |
Leng, L., Li, J., Wen, Z. and Zhou, W. (2018) Use of Microalgae to Recycle Nutrients in Aqueous Phase Derived from Hydrothermal Liquefaction Process. Bioresource Technology, 256, 529-542. https://doi.org/10.1016/j.biortech.2018.01.121 |
[12] |
Maddi, B., Panisko, E., Wietsma, T., Lemmon, T., Swita, M., Albrecht, K., et al. (2016) Quantitative Characterization of the Aqueous Fraction from Hydrothermal Liquefaction of Algae. Biomass and Bioenergy, 93, 122-130. https://doi.org/10.1016/j.biombioe.2016.07.010 |
[13] |
Leng, L., Xu, S., Liu, R., Yu, T., Zhuo, X., Leng, S., et al. (2020) Nitrogen Containing Functional Groups of Biochar: An Overview. Bioresource Technology, 298, Article ID: 122286. https://doi.org/10.1016/j.biortech.2019.122286 |
[14] |
Gu, Y., Zhang, X., Deal, B. and Han, L. (2019) Biological Systems for Treatment and Valorization of Wastewater Generated from Hydrothermal Liquefaction of Biomass and Systems Thinking: A Review. Bioresource Technology, 278, 329-345. https://doi.org/10.1016/j.biortech.2019.01.127 |
[15] |
Gollakota, A.R.K., Kishore, N. and Gu, S. (2018) A Review on Hydrothermal Liquefaction of Biomass. Renewable and Sustainable Energy Reviews, 81, 1378-1392. https://doi.org/10.1016/j.rser.2017.05.178 |
[16] |
Mathimani, T. and Mallick, N. (2019) A Review on the Hydrothermal Processing of Microalgal Biomass to Bio-Oil—Knowledge Gaps and Recent Advances. Journal of Cleaner Production, 217, 69-84. https://doi.org/10.1016/j.jclepro.2019.01.129 |
[17] |
张冀翔, 王东, 魏耀东. 微藻水热液化生物油物理性质与测量方法综述[J]. 化工进展, 2016, 35(1): 98-104. |
[18] |
Toor, S.S., Rosendahl, L. and Rudolf, A. (2011) Hydrothermal Liquefaction of Biomass: A Review of Subcritical Water Technologies. Energy, 36, 2328-2342. https://doi.org/10.1016/j.energy.2011.03.013 |
[19] |
Chaudry, S., Bahri, P.A. and Moheimani, N.R. (2015) Pathways of Processing of Wet Microalgae for Liquid Fuel Production: A Critical Review. Renewable and Sustainable Energy Reviews, 52, 1240-1250. https://doi.org/10.1016/j.rser.2015.08.005 |
[20] |
Gai, C., Zhang, Y., Chen, W., Zhang, P. and Dong, Y. (2015) An Investigation of Reaction Pathways of Hydrothermal Liquefaction Using Chlorella pyrenoidosa and Spirulina platensis. Energy Conversion and Management, 96, 330-339. https://doi.org/10.1016/j.enconman.2015.02.056 |
[21] |
Tang, X., Zhang, C., Li, Z. and Yang, X. (2016) Element and Chemical Compounds Transfer in Bio-Crude from Hydrothermal Liquefaction of Microalgae. Bioresource Technology, 202, 8-14. https://doi.org/10.1016/j.biortech.2015.11.076 |
[22] |
Zhang, C., Tang, X., Sheng, L. and Yang, X. (2016) Enhancing the Performance of Co-Hydrothermal Liquefaction for Mixed Algae Strains by the Maillard Reaction. Green Chemistry, 18, 2542-2553. https://doi.org/10.1039/c5gc02953h |
[23] |
庄修政, 黄艳琴, 阴秀丽, 等. 高蛋白藻类两步水热液化制备生物油的研究进展[J]. 石油学报(石油加工), 2017, 33(5): 1007-1016. |
[24] |
Gu, X., Martinez-Fernandez, J.S., Pang, N., Fu, X. and Chen, S. (2020) Recent Development of Hydrothermal Liquefaction for Algal Biorefinery. Renewable and Sustainable Energy Reviews, 121, Article ID: 109707. https://doi.org/10.1016/j.rser.2020.109707 |
[25] |
Chakraborty, M., Miao, C., McDonald, A. and Chen, S. (2012) Concomitant Extraction of Bio-Oil and Value Added Polysaccharides from Chlorella sorokiniana Using a Unique Sequential Hydrothermal Extraction Technology. Fuel, 95, 63-70. https://doi.org/10.1016/j.fuel.2011.10.055 |
[26] |
Miao, C., Chakraborty, M. and Chen, S. (2012) Impact of Reaction Conditions on the Simultaneous Production of Polysaccharides and Bio-Oil from Heterotrophically Grown Chlorella sorokiniana by a Unique Sequential Hydrothermal Liquefaction Process. Bioresource Technology, 110, 617-627. https://doi.org/10.1016/j.biortech.2012.01.047 |
[27] |
Miao, C., Chakraborty, M., Dong, T., Yu, X., Chi, Z. and Chen, S. (2014) Sequential Hydrothermal Fractionation of Yeast Cryptococcus curvatus Biomass. Bioresource Technology, 164, 106-112. https://doi.org/10.1016/j.biortech.2014.04.059 |
[28] |
Gu, X., Yu, L., Pang, N., Martinez-Fernandez, J.S., Fu, X. and Chen, S. (2020) Comparative Techno-Economic Analysis of Algal Biofuel Production via Hydrothermal Liquefaction: One Stage versus Two Stages. Applied Energy, 259, Article ID: 114115. https://doi.org/10.1016/j.apenergy.2019.114115 |
[29] |
Huang, Z., Wufuer, A., Wang, Y. and Dai, L. (2018) Hydrothermal Liquefaction of Pretreated Low-Lipid Microalgae for the Production of Bio-Oil with Low Heteroatom Content. Process Biochemistry, 69, 136-143. https://doi.org/10.1016/j.procbio.2018.03.018 |
[30] |
Jazrawi, C., Biller, P., He, Y., Montoya, A., Ross, A.B., Maschmeyer, T., et al. (2015) Two-Stage Hydrothermal Liquefaction of a High-Protein Microalga. Algal Research, 8, 15-22. https://doi.org/10.1016/j.algal.2014.12.010 |
[31] |
Martinez-Fernandez, J.S. and Chen, S. (2017) Sequential Hydrothermal Liquefaction Characterization and Nutrient Recovery Assessment. Algal Research, 25, 274-284. https://doi.org/10.1016/j.algal.2017.05.022 |
[32] |
袁松, 黄艳琴, 刘华财, 等. 低温水热预处理对高蛋白小球藻N分布和藻渣热解特性的影响[J]. 燃料化学学报, 2019, 47(1): 39-52. |
[33] |
高传瑞, 田纯焱, 李志合, 等. 生物原油炼制: 副产物内循环及水热自催化[J]. 化工进展, 2021. |
[34] |
Leng, S., Leng, L., Chen, L., Chen, J., Chen, J. and Zhou, W. (2020) The Effect of Aqueous Phase Recirculation on Hydrothermal Liquefaction/Carbonization of Biomass: A Review. Bioresource Technology, 318, Article ID: 124081. https://doi.org/10.1016/j.biortech.2020.124081 |
[35] |
Ramos-Tercero, E.A., Bertucco, A. and Brilman, D.W.F. (2015) Process Water Recycle in Hydrothermal Liquefaction of Microalgae to Enhance Bio-Oil Yield. Energy & Fuels, 29, 2422-2430. https://doi.org/10.1021/ef502773w |
[36] |
Biller, P., Madsen, R.B., Klemmer, M., Becker, J., Iversen, B.B. and Glasius, M. (2016) Effect of Hydrothermal Liquefaction Aqueous Phase Recycling on Bio-Crude Yields and Composition. Bioresource Technology, 220, 190-199. https://doi.org/10.1016/j.biortech.2016.08.053 |
[37] |
Hu, Y., Feng, S., Yuan, Z., Xu, C. and Bassi, A. (2017) Investigation of Aqueous Phase Recycling for Improving Bio-Crude Oil Yield in Hydrothermal Liquefaction of Algae. Bioresource Technology, 239, 151-159. https://doi.org/10.1016/j.biortech.2017.05.033 |
[38] |
Chen, H., He, Z., Zhang, B., Feng, H., Kandasamy, S. and Wang, B. (2019) Effects of the Aqueous Phase Recycling on Bio-Oil Yield in Hydrothermal Liquefaction of Spirulina Platensis, Α-Cellulose, and Lignin. Energy, 179, 1103-1113. https://doi.org/10.1016/j.energy.2019.04.184 |
[39] |
Taghipour, A., Hornung, U., Ramirez, J.A., Brown, R.J. and Rainey, T.J. (2021) Aqueous Phase Recycling in Catalytic Hydrothermal Liquefaction for Algal Biomass and the Effect on Elemental Accumulation and Energy Efficiency. Journal of Cleaner Production, 289, Article ID: 125582. https://doi.org/10.1016/j.jclepro.2020.125582 |