[1] |
García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M.A. and Martínez, J.A. (2009) Flavonoids as Anti-Inflammatory Agents: Implications in Cancer and Cardiovascular Disease. Inflammation Research, 58, 537-552. https://doi.org/10.1007/s00011-009-0037-3 |
[2] |
Chu, H., Lee, S., Wang, X., Lee, S., Yoon, H., Hwang, Y., et al. (2021) A Correlation Study on in Vitro Physiological Activities of Soybean Cultivars, 19 Individual Isoflavone Derivatives, and Genetic Characteristics. Antioxidants, 10, Article 2027. https://doi.org/10.3390/antiox10122027 |
[3] |
Abraham, C. and Cho, J.H. (2009) Inflammatory Bowel Disease. New England Journal of Medicine, 361, 2066-2078. https://doi.org/10.1056/nejmra0804647 |
[4] |
Hofmann, M.A., Drury, S., Hudson, B.I., Gleason, M.R., Qu, W., Lu, Y., et al. (2002) RAGE and Arthritis: The G82S Polymorphism Amplifies the Inflammatory Response. Genes & Immunity, 3, 123-135. https://doi.org/10.1038/sj.gene.6363861 |
[5] |
Hofmann Bowman, M., Wilk, J., Heydemann, A., Kim, G., Rehman, J., Lodato, J.A., et al. (2010) S100A12 Mediates Aortic Wall Remodeling and Aortic Aneurysm. Circulation Research, 106, 145-154. https://doi.org/10.1161/circresaha.109.209486 |
[6] |
Baker, R.G., Hayden, M.S. and Ghosh, S. (2011) NF-κB, Inflammation, and Metabolic Disease. Cell Metabolism, 13, 11-22. |
[7] |
Brown, J.D., Lin, C.Y., Duan, Q., et al. (2014) NF-κB Directs Dynamic Super Enhancer Formation in Inflammation and Atherogenesis. Molecular Cell, 56, 219-231. |
[8] |
Yao, J., Zhao, L., Zhao, Q., Zhao, Y., Sun, Y., Zhang, Y., et al. (2014) NF-κB and NRF2 Signaling Pathways Contribute to Wogonin-Mediated Inhibition of Inflammation-Associated Colorectal Carcinogenesis. Cell Death & Disease, 5, e1283. https://doi.org/10.1038/cddis.2014.221 |
[9] |
Yang, H., Liu, C., Lin, X., Li, X., Zeng, S., Gong, Z., et al. (2024) Wogonin Inhibits the Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting PI3K/AKT/NF-κB Pathway in Rheumatoid Arthritis. Archives of Biochemistry and Biophysics, 755, Article ID: 109965. https://doi.org/10.1016/j.abb.2024.109965 |
[10] |
Hu, H., Zhu, X., Lin, R., Li, Z. and Chen, L. (2016) Suppressive Effects of Gua Lou Gui Zhi Decoction on MCAO-Induced NO and PGE2 Production Are Dependent on the MAPK and NF-κB Signaling Pathways. Molecular Medicine Reports, 14, 5141-5147. https://doi.org/10.3892/mmr.2016.5876 |
[11] |
Yang, L., Chang, Y., Chiang, C., Huang, F., Su, N. and Kuan, Y. (2022) Protective Effect of Wogonin on Inflammatory Responses in Bis-GMA‐Treated Macrophages through the Inhibition of MAPK and NF-κB Pathways. Environmental Toxicology, 37, 3007-3012. https://doi.org/10.1002/tox.23655 |
[12] |
Chu, Y., Lv, X., Zhang, L., et al. (2020) Wogonin Inhibits in Vitro Herpes Simplex Virus Type 1 and 2 Infection by Modulating Cellular NF-κB and MAPK Pathways Protective Effect of Wogonin on Endotoxin-Induced Acute Lung Injury via Reduction of p38 MAPK and JNK Phosphorylation. BMC Microbiology, 20, Article No. 227. |
[13] |
Chen, Y.C., Shen, S.C., Chen, L.G., Lee, T.J. and Yang, L.L. (2001) Wogonin, Baicalin, and Baicalein Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Gene Expressions Induced by Nitric Oxide Synthase Inhibitors and Lipopolysaccharide. Biochemical Pharmacology, 61, 1417-1427. |
[14] |
Pan, M., Lai, C., Wang, Y. and Ho, C. (2006) Acacetin Suppressed LPS-Induced Up-Expression of Inos and COX-2 in Murine Macrophages and TPA-Induced Tumor Promotion in Mice. Biochemical Pharmacology, 72, 1293-1303. https://doi.org/10.1016/j.bcp.2006.07.039 |
[15] |
Berruyer, C., Pouyet, L., Millet, V., Martin, F.M., LeGoffic, A., Canonici, A., et al. (2006) Vanin-1 Licenses Inflammatory Mediator Production by Gut Epithelial Cells and Controls Colitis by Antagonizing Peroxisome Proliferator-Activated Receptor γ Activity. The Journal of Experimental Medicine, 203, 2817-2827. https://doi.org/10.1084/jem.20061640 |
[16] |
Song, X., Li, F., Zhang, M., Xia, Y., Ai, L. and Wang, G. (2022) Effect of D-Ala-Ended Peptidoglycan Precursors on the Immune Regulation of Lactobacillus plantarum Strains. Frontiers in Immunology, 12, Article 825825. https://doi.org/10.3389/fimmu.2021.825825 |
[17] |
Nicosia, N., Kwiecień, I., Mazurek, J., Mika, K., Bednarski, M., Miceli, N., et al. (2022) Hydroalcoholic Leaf Extract of Isatis tinctoria L. via Antioxidative and Anti-Inflammatory Effects Reduces Stress-Induced Behavioral and Cellular Disorders in Mice. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3567879. https://doi.org/10.1155/2022/3567879 |
[18] |
Zhu, Y., Fang, J., Wang, H., Fei, M., Tang, T., Liu, K., et al. (2018) Baicalin Suppresses Proliferation, Migration, and Invasion in Human Glioblastoma Cells via Ca2+-Dependent Pathway. Drug Design, Development and Therapy, 12, 3247-3261. https://doi.org/10.2147/dddt.s176403 |
[19] |
Domiński, A., Domińska, M., Skonieczna, M., Pastuch-Gawołek, G. and Kurcok, P. (2022) Shell-Sheddable Micelles Based on Poly(Ethylene Glycol)-Hydrazone-Poly[r, s]-3-Hydroxybutyrate Copolymer Loaded with 8-Hydroxyquinoline Glycoconjugates as a Dual Tumor-Targeting Drug Delivery System. Pharmaceutics, 14, Article 290. https://doi.org/10.3390/pharmaceutics14020290 |
[20] |
Wang, W., Guo, Q., You, Q., Zhang, K., Yang, Y., Yu, J., et al. (2006) Involvement of Bax/bcl-2 in Wogonin-Induced Apoptosis of Human Hepatoma Cell Line Smmc-7721. Anti-Cancer Drugs, 17, 797-805. https://doi.org/10.1097/01.cad.0000217431.64118.3f |
[21] |
Lotem, J., Peled-Kamar, M., Groner, Y. and Sachs, L. (1996) Cellular Oxidative Stress and the Control of Apoptosis by Wild-Type P53, Cytotoxic Compounds, and Cytokines. Proceedings of the National Academy of Sciences of the United States of America, 93, 9166-9171. https://doi.org/10.1073/pnas.93.17.9166 |
[22] |
Liang, F., Zhang, K., Ma, W., Zhan, H., Sun, Q., Xie, L., et al. (2022) Impaired Autophagy and Mitochondrial Dynamics Are Involved in Sorafenib-Induced Cardiomyocyte Apoptosis. Toxicology, 481, Article ID: 153348. https://doi.org/10.1016/j.tox.2022.153348 |
[23] |
He, L., Lu, N., Dai, Q., Zhao, Y., Zhao, L., Wang, H., et al. (2013) Wogonin Induced G1 Cell Cycle Arrest by Regulating Wnt/β-Catenin Signaling Pathway and Inactivating CDK8 in Human Colorectal Cancer Carcinoma Cells. Toxicology, 312, 36-47. https://doi.org/10.1016/j.tox.2013.07.013 |
[24] |
Qie, S. and Diehl, J.A. (2016) Cyclin D1, Cancer Progression, and Opportunities in Cancer Treatment. Journal of Molecular Medicine, 94, 1313-1326. https://doi.org/10.1007/s00109-016-1475-3 |
[25] |
Zhao, L., Miao, H., Li, W., Sun, Y., Huang, S., Li, Z., et al. (2015) LW-213 Induces G2/M Cell Cycle Arrest through AKT/GSK3β/β-Catenin Signaling Pathway in Human Breast Cancer Cells. Molecular Carcinogenesis, 55, 778-792. https://doi.org/10.1002/mc.22321 |
[26] |
Lu, N., Gao, Y., Ling, Y., Chen, Y., Yang, Y., Gu, H., et al. (2008) Wogonin Suppresses Tumor Growth in Vivo and VEGF-Induced Angiogenesis through Inhibiting Tyrosine Phosphorylation of VEGFR2. Life Sciences, 82, 956-963. https://doi.org/10.1016/j.lfs.2008.02.013 |
[27] |
Chen, W., Hsu, F., Liu, Y., Chen, C., Hsu, L. and Lin, S. (2019) Fluoxetine Induces Apoptosis through Extrinsic/Intrinsic Pathways and Inhibits ERK/NF-κB-Modulated Anti-Apoptotic and Invasive Potential in Hepatocellular Carcinoma Cells in Vitro. International Journal of Molecular Sciences, 20, Article 757. https://doi.org/10.3390/ijms20030757 |
[28] |
Bai, R., Guo, J., Ye, X., Xie, Y. and Xie, T. (2022) Oxidative Stress: The Core Pathogenesis and Mechanism of Alzheimer’s Disease. Ageing Research Reviews, 77, Article ID: 101619. https://doi.org/10.1016/j.arr.2022.101619 |
[29] |
Xin, Q., Shi, W., Wang, Y., Yuan, R., Miao, Y., Chen, K., et al. (2022) Pantao Pill Improves the Learning and Memory Abilities of APP/PS1 Mice by Multiple Mechanisms. Frontiers in Pharmacology, 13, Article 729605. https://doi.org/10.3389/fphar.2022.729605 |
[30] |
He, X., Wang, J., Sun, L., Ma, W., Li, M., Yu, S., et al. (2023) Wogonin Attenuates Inflammation and Oxidative Stress in Lipopolysaccharide-Induced Mastitis by Inhibiting AKT/ NF-κB Pathway and Activating the NRF2/Ho-1 Signaling. Cell Stress and Chaperones, 28, 989-999. https://doi.org/10.1007/s12192-023-01391-4 |
[31] |
Liu, Y., Zhang, M., Zeng, L., Lai, Y., Wu, S. and Su, X. (2024) Wogonin Upregulates SOCS3 to Alleviate the Injury in Diabetic Nephropathy by Inhibiting TLR4-Mediated JAK/STAT/AIM2 Signaling Pathway. Molecular Medicine, 30, Article No. 78. https://doi.org/10.1186/s10020-024-00845-4 |
[32] |
Jiang, Q., Wei, D., He, X., Gan, C., Long, X. and Zhang, H. (2021) Phillyrin Prevents Neuroinflammation-Induced Blood-Brain Barrier Damage Following Traumatic Brain Injury via Altering Microglial Polarization. Frontiers in Pharmacology, 12, Article 719823. https://doi.org/10.3389/fphar.2021.719823 |
[33] |
Piao, H.Z., Choi, I.Y., Park, J., Kim, H., Cheong, J.H., Son, K.H., et al. (2008) Wogonin Inhibits Microglial Cell Migration via Suppression of Nuclear Factor-κ B Activity. International Immunopharmacology, 8, 1658-1662. https://doi.org/10.1016/j.intimp.2008.07.018 |
[34] |
Zheng, Z., Zhu, W., Lei, L., Liu, X. and Wu, Y. (2020) Wogonin Ameliorates Renal Inflammation and Fibrosis by Inhibiting NF-κB and TGF-β1/Smad3 Signaling Pathways in Diabetic Nephropathy. Drug Design, Development and Therapy, 14, 4135-4148. https://doi.org/10.2147/dddt.s274256 |
[35] |
Chen, G., Hu, T., Li, Q., et al. (2013) Expression of Synaptosomal-Associated Protein-25 in the Rat Brain after Subarachnoid Hemorrhage. Neural Regeneration Research, 8, 2693-2702. |
[36] |
Lee, B., Sur, B., Cho, S., Yeom, M., Shim, I., Lee, H., et al. (2016) Wogonin Attenuates Hippocampal Neuronal Loss and Cognitive Dysfunction in Trimethyltin-Intoxicated Rats. Biomolecules & Therapeutics, 24, 328-337. https://doi.org/10.4062/biomolther.2015.152 |
[37] |
Guo, Q., Zhao, L., You, Q., Yang, Y., Gu, H., Song, G., et al. (2007) Anti-Hepatitis β Virus Activity of Wogonin in Vitro and in Vivo. Antiviral Research, 74, 16-24. https://doi.org/10.1016/j.antiviral.2007.01.002 |
[38] |
Zhang, H., Cai, J., Li, C., Deng, L., Zhu, H., Huang, T., et al. (2023) Wogonin Inhibits Latent HIV-1 Reactivation by Downregulating Histone Crotonylation. Phytomedicine, 116, Article ID: 154855. https://doi.org/10.1016/j.phymed.2023.154855 |
[39] |
Xiao, W., Yin, M., Wu, K., et al. (2017) High-Dose Wogonin Exacerbates DSS-Induced Colitis by Up-Regulating Effector T Cell Function and Inhibiting Treg Cell. Journal of Cellular and Molecular Medicine, 21, 286-298. |
[40] |
Nie, H., Yan, C., Zhou, W. and Li, T. (2022) Analysis of Immune and Inflammation Characteristics of Atherosclerosis from Different Sample Sources. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 5491038. https://doi.org/10.1155/2022/5491038 |
[41] |
Chen, C., Shyue, S., Ching, L., Su, K., Wu, Y., Kou, Y.R., et al. (2011) Wogonin Promotes Cholesterol Efflux by Increasing Protein Phosphatase 2B-Dependent Dephosphorylation at ATP-Binding Cassette Transporter-A1 in Macrophages. The Journal of Nutritional Biochemistry, 22, 1015-1021. https://doi.org/10.1016/j.jnutbio.2010.08.014 |
[42] |
Wu, J., Chen, L., Hu, C., Chiu, K., Lin, W., Ho, P., et al. (2022) Immunotoxicity and Anti-Inflammatory Characterizations of Prenylated Flavonoids—The Lipophilic 7-O-Terpenylated Wogonin. Life, 12, Article 2116. https://doi.org/10.3390/life12122116 |
[43] |
Cannon, C.P. (2007) Cardiovascular Disease and Modifiable Cardiometabolic Risk Factors. Clinical Cornerstone, 8, 11-28. https://doi.org/10.1016/s1098-3597(07)80025-1 |
[44] |
Lu, L., Li, Y., Dong, Q., Fang, J., Chen, A., Lan, Z., et al. (2023) Wogonin Inhibits Oxidative Stress and Vascular Calcification via Modulation of Heme Oxygenase-1. European Journal of Pharmacology, 958, Article ID: 176070. https://doi.org/10.1016/j.ejphar.2023.176070 |
[45] |
Cosby, K., Partovi, K.S., et al. (2003) Nitrite Reduction to Nitric Oxide by Deoxyhemoglobin Vasodilates the Human Circulation. Nature Medicine, 9, 1498-1505. |
[46] |
Wu, Y., Chuang, L., Yu, C., Wang, S., Chen, H. and Chang, Y. (2019) Anticoagulant Effect of Wogonin against Tissue Factor Expression. European Journal of Pharmacology, 859, Article ID: 172517. https://doi.org/10.1016/j.ejphar.2019.172517 |
[47] |
Kimura, Y., Okuda, H. and Ogita, Z. (1997) Effects of Flavonoids Isolated from Scutellariae Radix on Fibrinolytic System Induced by Trypsin in Human Umbilical Vein Endothelial Cells. Journal of Natural Products, 60, 598-601. https://doi.org/10.1021/np970035l |
[48] |
Ueng, Y., Shyu, C., Lin, Y., Park, S.S., Liao, J. and Chen, C. (2000) Effects of Baicalein and Wogonin on Drug-Metabolizing Enzymes in C57BL/6J Mice. Life Sciences, 67, 2189-2200. https://doi.org/10.1016/s0024-3205(00)00809-2 |
[49] |
Shao, Y., Zhao, P., Li, Z., Liu, M., Liu, P., Huang, M., et al. (2012) The Molecular Basis for the Inhibition of Human Cytochrome P450 1A2 by Oroxylin and Wogonin. European Biophysics Journal, 41, 297-306. https://doi.org/10.1007/s00249-011-0785-1 |
[50] |
Baek, J., Na, Y. and Cho, C. (2018) Sustained Cytotoxicity of Wogonin on Breast Cancer Cells by Encapsulation in Solid Lipid Nanoparticles. Nanomaterials, 8, Article 159. https://doi.org/10.3390/nano8030159 |
[51] |
Zhao, Z., Nian, M., Qiao, H., Yang, X., Wu, S. and Zheng, X. (2022) Review of Bioactivity and Structure-Activity Relationship on Baicalein (5,6,7-Trihydroxyflavone) and Wogonin (5,7-Dihydroxy-8-Methoxyflavone) Derivatives: Structural Modifications Inspired from Flavonoids in Scutellaria baicalensis. European Journal of Medicinal Chemistry, 243, Article ID: 114733. https://doi.org/10.1016/j.ejmech.2022.114733 |