[1] |
Torres, A., Cilloniz, C., Niederman, M.S., Menéndez, R., Chalmers, J.D., Wunderink, R.G., et al. (2021) Pneumonia. Nature Reviews Disease Primers, 7, Article No. 25. https://doi.org/10.1038/s41572-021-00259-0 |
[2] |
熊静, 唐睿, 吴红梅. 重症肺炎患者肺康复治疗的研究进展[J]. 中华肺部疾病杂志(电子版), 2020, 13(4): 557-559. |
[3] |
Martin-Loeches, I. and Torres, A. (2021) New Guidelines for Severe Community-Acquired Pneumonia. Current Opinion in Pulmonary Medicine, 27, 210-215. https://doi.org/10.1097/mcp.0000000000000760 |
[4] |
Torres, A., Chalmers, J.D., Dela Cruz, C.S., Dominedò, C., Kollef, M., Martin-Loeches, I., et al. (2019) Challenges in Severe Community-Acquired Pneumonia: A Point-of-View Review. Intensive Care Medicine, 45, 159-171. https://doi.org/10.1007/s00134-019-05519-y |
[5] |
Leoni, D., Blot, S., Tsigou, E. and Koulenti, D. (2017) What We Learned from the EU-VAP/CAP Study for Severe Pneumonia. Clinical Pulmonary Medicine, 24, 112-120. https://doi.org/10.1097/cpm.0000000000000204 |
[6] |
高志, 孙照祝. 重症肺炎的呼吸支持治疗进展[J]. 中国医刊, 2021, 56(9): 946-948. |
[7] |
Martin-Loeches, I., Garduno, A., Povoa, P. and Nseir, S. (2022) Choosing Antibiotic Therapy for Severe Community-Acquired Pneumonia. Current Opinion in Infectious Diseases, 35, 133-139. https://doi.org/10.1097/qco.0000000000000819 |
[8] |
Alós, J. (2015) Resistencia bacteriana a los antibióticos: Una crisis global. Enfermedades Infecciosas y Microbiología Clínica, 33, 692-699. https://doi.org/10.1016/j.eimc.2014.10.004 |
[9] |
曾玉, 韩瑞婷, 周庆伟. 基于网络药理学与分子对接技术探讨痰热清注射液治疗急性肺损伤的作用机制[J]. 中国中药杂志, 2021, 46(15): 3960-3969. |
[10] |
Yang, W., Cui, K., Tong, Q., Ma, S., Sun, Y., He, G., et al. (2022) Traditional Chinese Medicine Tanreqing Targets Both Cell Division and Virulence in Staphylococcus Aureus. Frontiers in Cellular and Infection Microbiology, 12, Article 884045. https://doi.org/10.3389/fcimb.2022.884045 |
[11] |
Hu, C., Li, J., Tan, Y., Liu, Y., Bai, C., Gao, J., et al. (2022) Tanreqing Injection Attenuates Macrophage Activation and the Inflammatory Response via the Lncrna-Snhg1/Hmgb1 Axis in Lipopolysaccharide-Induced Acute Lung Injury. Frontiers in Immunology, 13, Article 820718. https://doi.org/10.3389/fimmu.2022.820718 |
[12] |
刘嘉, 万春艳. 熊胆粉溶胆结石的作用研究[J]. 中国林副特产, 2007(4): 37-39. |
[13] |
王佳婧, 郑勇凤, 秦晶, 等. 熊胆粉的药理作用与新剂型研究进展[J]. 中国医院药学杂志, 2016, 36(7): 598-602. |
[14] |
李菲, 王伯初, 祝连彩. 熊胆粉与家禽胆粉中氨基酸和微量元素的比较分析[J]. 中成药, 2015, 37(11): 2555-2558. |
[15] |
Wang, Y., Liu, Z., Li, C., Li, D., Ouyang, Y., Yu, J., et al. (2012) Drug Target Prediction Based on the Herbs Components: The Study on the Multitargets Pharmacological Mechanism of Qishenkeli Acting on the Coronary Heart Disease. Evidence-Based Complementary and Alternative Medicine, 2012, 1-10. https://doi.org/10.1155/2012/698531 |
[16] |
Funakoshi-Tago, M., Nakamura, K., Tago, K., Mashino, T. and Kasahara, T. (2011) Anti-Inflammatory Activity of Structurally Related Flavonoids, Apigenin, Luteolin and Fisetin. International Immunopharmacology, 11, 1150-1159. https://doi.org/10.1016/j.intimp.2011.03.012 |
[17] |
Devi, K.P., Malar, D.S., Nabavi, S.F., Sureda, A., Xiao, J., Nabavi, S.M., et al. (2015) Kaempferol and Inflammation: From Chemistry to Medicine. Pharmacological Research, 99, 1-10. https://doi.org/10.1016/j.phrs.2015.05.002 |
[18] |
Huang, R., Yu, Y., Cheng, W., OuYang, C., Fu, E. and Chu, C. (2010) Immunosuppressive Effect of Quercetin on Dendritic Cell Activation and Function. The Journal of Immunology, 184, 6815-6821. https://doi.org/10.4049/jimmunol.0903991 |
[19] |
Endale, M., Park, S., Kim, S., Kim, S., Yang, Y., Cho, J.Y., et al. (2013) Quercetin Disrupts Tyrosine-Phosphorylated Phosphatidylinositol 3-Kinase and Myeloid Differentiation Factor-88 Association, and Inhibits MAPK/AP-1 and IKK/NF-κB-Induced Inflammatory Mediators Production in RAW 264.7 Cells. Immunobiology, 218, 1452-1467. https://doi.org/10.1016/j.imbio.2013.04.019 |
[20] |
Shorobi, F.M., Nisa, F.Y., Saha, S., Chowdhury, M.A.H., Srisuphanunt, M., Hossain, K.H., et al. (2023) Quercetin: A Functional Food-Flavonoid Incredibly Attenuates Emerging and Re-Emerging Viral Infections through Immunomodulatory Actions. Molecules, 28, Article 938. https://doi.org/10.3390/molecules28030938 |
[21] |
Mlala, S., Oyedeji, A.O., Gondwe, M. and Oyedeji, O.O. (2019) Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules, 24, Article 2751. https://doi.org/10.3390/molecules24152751 |
[22] |
Gayathri, R., Priya, D.K., Gunassekaran, G.R., et al. (2009) Ursolic Acid Attenuates Oxidative Stress-Mediated Hepatocellular Carcinoma Induction by Diethylnitrosamine in Male Wistar Rats. Asian Pacific Journal of Cancer Prevention, 10, 933-938. |
[23] |
Saravanakumar, K., Park, S., Sathiyaseelan, A., Kim, K., Cho, S., Mariadoss, A.V.A., et al. (2021) Metabolite Profiling of Methanolic Extract of Gardenia Jaminoides by LC-MS/MS and GC-MS and Its Anti-Diabetic, and Anti-Oxidant Activities. Pharmaceuticals, 14, Article 102. https://doi.org/10.3390/ph14020102 |
[24] |
Franza, L., Carusi, V., Nucera, E. and Pandolfi, F. (2021) Luteolin, Inflammation and Cancer: Special Emphasis on Gut Microbiota. BioFactors, 47, 181-189. https://doi.org/10.1002/biof.1710 |
[25] |
Aziz, N., Kim, M. and Cho, J.Y. (2018) Anti-Inflammatory Effects of Luteolin: A Review of in Vitro, in Vivo, and in Silico Studies. Journal of Ethnopharmacology, 225, 342-358. https://doi.org/10.1016/j.jep.2018.05.019 |
[26] |
Chen, M., Xiao, J., El-Seedi, H.R., et al. (2022) Kaempferol and Atherosclerosis: From Mechanism to Medicine. Critical Reviews in Food Science and Nutrition, 64, 2157-2175. |
[27] |
Huynh, D.L., Ngau, T.H., Nguyen, N.H., Tran, G. and Nguyen, C.T. (2020) Potential Therapeutic and Pharmacological Effects of Wogonin: An Updated Review. Molecular Biology Reports, 47, 9779-9789. https://doi.org/10.1007/s11033-020-05972-9 |
[28] |
Lei, L., Zhao, J., Liu, X., Chen, J., Qi, X., Xia, L., et al. (2021) Wogonin Alleviates Kidney Tubular Epithelial Injury in Diabetic Nephropathy by Inhibiting PI3K/Akt/NF-κB Signaling Pathways. Drug Design, Development and Therapy, 15, 3131-3150. https://doi.org/10.2147/dddt.s310882 |
[29] |
Dai, J., Guo, W., Tan, Y., Niu, K., Zhang, J., Liu, C., et al. (2021) Wogonin Alleviates Liver Injury in Sepsis through Nrf2-Mediated NF-κB Signalling Suppression. Journal of Cellular and Molecular Medicine, 25, 5782-5798. https://doi.org/10.1111/jcmm.16604 |
[30] |
Willemsen, J., Neuhoff, M., Hoyler, T., Noir, E., Tessier, C., Sarret, S., et al. (2021) TNF Leads to mtDNA Release and cGAS/STING-Dependent Interferon Responses That Support Inflammatory Arthritis. Cell Reports, 37, Article 109977. https://doi.org/10.1016/j.celrep.2021.109977 |
[31] |
Zhong, Z., Wen, Z. and Darnell, J.E. (1994) Stat3: A STAT Family Member Activated by Tyrosine Phosphorylation in Response to Epidermal Growth Factor and Interleukin-6. Science, 264, 95-98. https://doi.org/10.1126/science.8140422 |
[32] |
Tuazon Kels, M.J., Ng, E., Al Rumaih, Z., Pandey, P., Ruuls, S.R., Korner, H., et al. (2020) TNF Deficiency Dysregulates Inflammatory Cytokine Production, Leading to Lung Pathology and Death during Respiratory Poxvirus Infection. Proceedings of the National Academy of Sciences, 117, 15935-15946. https://doi.org/10.1073/pnas.2004615117 |
[33] |
梁木林, 党红星, 鲁雪, 等. 抑制mTOR信号通路对幼鼠肺损伤时p-AKT1分子的影响及意义[J]. 中国病理生理杂志, 2019, 35(3): 506-514. |
[34] |
Cao, P., Aoki, Y., Badri, L., Walker, N.M., Manning, C.M., Lagstein, A., et al. (2017) Autocrine Lysophosphatidic Acid Signaling Activates Β-Catenin and Promotes Lung Allograft Fibrosis. Journal of Clinical Investigation, 127, 1517-1530. https://doi.org/10.1172/jci88896 |
[35] |
Sun, J., Jin, T., Niu, Z., Guo, J., Guo, Y., Yang, R., et al. (2022) Lncrna DACH1 Protects against Pulmonary Fibrosis by Binding to SRSF1 to Suppress CTNNB1 Accumulation. Acta Pharmaceutica Sinica B, 12, 3602-3617. https://doi.org/10.1016/j.apsb.2022.04.006 |
[36] |
Abramson, S. and Yazici, Y. (2006) Biologics in Development for Rheumatoid Arthritis: Relevance to Osteoarthritis. Advanced Drug Delivery Reviews, 58, 212-225. https://doi.org/10.1016/j.addr.2006.01.008 |
[37] |
Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., et al. (2020) Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients. Science, 369, 718-724. https://doi.org/10.1126/science.abc6027 |
[38] |
Menter, A., Krueger, G.G., Paek, S.Y., Kivelevitch, D., Adamopoulos, I.E. and Langley, R.G. (2021) Interleukin-17 and Interleukin-23: A Narrative Review of Mechanisms of Action in Psoriasis and Associated Comorbidities. Dermatology and Therapy, 11, 385-400. https://doi.org/10.1007/s13555-021-00483-2 |
[39] |
Kayama, H., Tani, H., Kitada, S., Opasawatchai, A., Okumura, R., Motooka, D., et al. (2019) BATF2 Prevents T-Cell-Mediated Intestinal Inflammation through Regulation of the IL-23/IL-17 Pathway. International Immunology, 31, 371-383. https://doi.org/10.1093/intimm/dxz014 |
[40] |
Morrow, K.N., Coopersmith, C.M. and Ford, M.L. (2019) IL-17, IL-27, and IL-33: A Novel Axis Linked to Immunological Dysfunction during Sepsis. Frontiers in Immunology, 10, Article 1982. https://doi.org/10.3389/fimmu.2019.01982 |
[41] |
Ritchie, N.D., Ritchie, R., Bayes, H.K., Mitchell, T.J. and Evans, T.J. (2018) IL-17 Can Be Protective or Deleterious in Murine Pneumococcal Pneumonia. PLOS Pathogens, 14, e1007099. https://doi.org/10.1371/journal.ppat.1007099 |
[42] |
Yamaguchi, S., Nambu, A., Numata, T., Yoshizaki, T., Narushima, S., Shimura, E., et al. (2018) The Roles of IL-17C in T Cell-Dependent and Independent Inflammatory Diseases. Scientific Reports, 8, Article No. 15750. https://doi.org/10.1038/s41598-018-34054-x |
[43] |
闫百灵, 唐颖, 付尧, 等. HMGB1-IL-17信号传导轴在老年重症肺炎患者中作用及机制[J]. 中国老年学杂志, 2018, 38(14): 3380-3382. |
[44] |
Pacha, O., Sallman, M.A. and Evans, S.E. (2020) COVID-19: A Case for Inhibiting Il-17? Nature Reviews Immunology, 20, 345-346. https://doi.org/10.1038/s41577-020-0328-z |