[1] |
Chamberlain, G., Fox, J., Ashton, B. and Middleton, J. (2007) Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells, 25, 2739-2749. https://doi.org/10.1634/stemcells.2007-0197 |
[2] |
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., et al. (2006) Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8, 315-317. https://doi.org/10.1080/14653240600855905 |
[3] |
Wang, L., Liu, K., Sytwu, H., Yen, M. and Yen, B.L. (2021) Advances in Mesenchymal Stem Cell Therapy for Immune and Inflammatory Diseases: Use of Cell-Free Products and Human Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Stem Cells Translational Medicine, 10, 1288-1303. https://doi.org/10.1002/sctm.21-0021 |
[4] |
Zhang, J., Huang, X., Wang, H., Liu, X., Zhang, T., Wang, Y., et al. (2015) The Challenges and Promises of Allogeneic Mesenchymal Stem Cells for Use as a Cell-Based Therapy. Stem Cell Research & Therapy, 6, Article No. 234. https://doi.org/10.1186/s13287-015-0240-9 |
[5] |
Uccelli, A., Moretta, L. and Pistoia, V. (2008) Mesenchymal Stem Cells in Health and Disease. Nature Reviews Immunology, 8, 726-736. https://doi.org/10.1038/nri2395 |
[6] |
Liu, H., Li, R., Liu, T., Yang, L., Yin, G. and Xie, Q. (2020) Immunomodulatory Effects of Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Rheumatoid Arthritis. Frontiers in Immunology, 11, Article No. 1912. https://doi.org/10.3389/fimmu.2020.01912 |
[7] |
Shen, Z., Huang, W., Liu, J., Tian, J., Wang, S. and Rui, K. (2021) Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Frontiers in Immunology, 12, Article ID: 749192. https://doi.org/10.3389/fimmu.2021.749192 |
[8] |
Lin, B., Chen, J., Qiu, W., Wang, K., Xie, D., Chen, X., et al. (2017) Allogeneic Bone Marrow-Derived Mesenchymal Stromal Cells for Hepatitis B Virus-Related Acute‐on‐Chronic Liver Failure: A Randomized Controlled Trial. Hepatology, 66, 209-219. https://doi.org/10.1002/hep.29189 |
[9] |
Pan, Y., Wu, W., Jiang, X. and Liu, Y. (2023) Mesenchymal Stem Cell-Derived Exosomes in Cardiovascular and Cerebrovascular Diseases: From Mechanisms to Therapy. Biomedicine & Pharmacotherapy, 163, Article ID: 114817. https://doi.org/10.1016/j.biopha.2023.114817 |
[10] |
Yamanaka, S. (2020) Pluripotent Stem Cell-Based Cell Therapy—Promise and Challenges. Cell Stem Cell, 27, 523-531. https://doi.org/10.1016/j.stem.2020.09.014 |
[11] |
Chiou, S., Ong, H.K.A., Chou, S., Aldoghachi, A.F., Loh, J.K., Verusingam, N.D., et al. (2023) Current Trends and Promising Clinical Utility of IPSC-Derived MSC (iMSC). In: Progress in Molecular Biology and Translational Science, Elsevier, 131-154. https://doi.org/10.1016/bs.pmbts.2023.04.002 |
[12] |
Ikeda, Y., Makino, A., Matchett, W.E., Holditch, S.J., Lu, B., Dietz, A.B., et al. (2015) A Novel Intranuclear RNA Vector System for Long-Term Stem Cell Modification. Gene Therapy, 23, 256-262. https://doi.org/10.1038/gt.2015.108 |
[13] |
Ravin, S.S.T., Kennedy, D.R., Naumann, N., Kennedy, J.S., Choi, U., Hartnett, B.J., et al. (2006) Correction of Canine X-Linked Severe Combined Immunodeficiency by in Vivo Retroviral Gene Therapy. Blood, 107, 3091-3097. https://doi.org/10.1182/blood-2005-10-4057 |
[14] |
Kohn, D.B., Booth, C., Shaw, K.L., Xu-Bayford, J., Garabedian, E., Trevisan, V., et al. (2021) Autologous Ex Vivo Lentiviral Gene Therapy for Adenosine Deaminase Deficiency. New England Journal of Medicine, 384, 2002-2013. https://doi.org/10.1056/nejmoa2027675 |
[15] |
Wang, C., Wang, Y., Wang, H., Yang, H., Cao, Y., Xia, D., et al. (2020) SFRP2 Enhances Dental Pulp Stem Cell‐mediated Dentin Regeneration in Rabbit Jaw. Oral Diseases, 27, 1738-1746. https://doi.org/10.1111/odi.13698 |
[16] |
Gutierrez-Guerrero, A., Cosset, F. and Verhoeyen, E. (2020) Lentiviral Vector Pseudotypes: Precious Tools to Improve Gene Modification of Hematopoietic Cells for Research and Gene Therapy. Viruses, 12, Article No. 1016. https://doi.org/10.3390/v12091016 |
[17] |
Cho, Y., Cha, M., Song, B., Kim, I., Song, H., Chang, W., et al. (2012) Enhancement of MSC Adhesion and Therapeutic Efficiency in Ischemic Heart Using Lentivirus Delivery with Periostin. Biomaterials, 33, 1376-1385. https://doi.org/10.1016/j.biomaterials.2011.10.078 |
[18] |
Smith, L.J., Ul-Hasan, T., Carvaines, S.K., Van Vliet, K., Yang, E., Wong, K.K., et al. (2014) Gene Transfer Properties and Structural Modeling of Human Stem Cell-Derived AAV. Molecular Therapy, 22, 1625-1634. https://doi.org/10.1038/mt.2014.107 |
[19] |
Hammer, K., Kazcorowski, A., Liu, L., Behr, M., Schemmer, P., Herr, I., et al. (2015) Engineered Adenoviruses Combine Enhanced Oncolysis with Improved Virus Production by Mesenchymal Stromal Carrier Cells. International Journal of Cancer, 137, 978-990. https://doi.org/10.1002/ijc.29442 |
[20] |
McCarter, S.D., Scott, J.R., Lee, P.J., Zhang, X., Choi, A.M.K., McLean, C.A., et al. (2003) Cotransfection of Heme Oxygenase-1 Prevents the Acute Inflammation Elicited by a Second Adenovirus. Gene Therapy, 10, 1629-1635. https://doi.org/10.1038/sj.gt.3302063 |
[21] |
Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. and Hasegawa, M. (2009) Efficient Induction of Transgene-Free Human Pluripotent Stem Cells Using a Vector Based on Sendai Virus, an RNA Virus That Does Not Integrate into the Host Genome. Proceedings of the Japan Academy, Series B, 85, 348-362. https://doi.org/10.2183/pjab.85.348 |
[22] |
Chow, Y.T., Chen, S., Wang, R., Liu, C., Kong, C., Li, R.A., et al. (2016) Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes. Scientific Reports, 6, Article No. 24127. https://doi.org/10.1038/srep24127 |
[23] |
Valero, A., Post, J.N., van Nieuwkasteele, J.W., ter Braak, P.M., Kruijer, W. and van den Berg, A. (2008) Gene Transfer and Protein Dynamics in Stem Cells Using Single Cell Electroporation in a Microfluidic Device. Lab Chip, 8, 62-67. https://doi.org/10.1039/b713420g |
[24] |
Mun, J., Shin, K.K., Kwon, O., Lim, Y.T. and Oh, D. (2016) Minicircle Microporation-Based Non-Viral Gene Delivery Improved the Targeting of Mesenchymal Stem Cells to an Injury Site. Biomaterials, 101, 310-320. https://doi.org/10.1016/j.biomaterials.2016.05.057 |
[25] |
Kim, J.H., Shin, K., Li, T.Z. and Suh, H. (2010) Potential of Nucleofected Human Mscs for Insulin Secretion. Journal of Tissue Engineering and Regenerative Medicine, 5, 761-769. https://doi.org/10.1002/term.371 |
[26] |
Otani, K., Yamahara, K., Ohnishi, S., Obata, H., Kitamura, S. and Nagaya, N. (2009) Nonviral Delivery of siRNA into Mesenchymal Stem Cells by a Combination of Ultrasound and Microbubbles. Journal of Controlled Release, 133, 146-153. https://doi.org/10.1016/j.jconrel.2008.09.088 |
[27] |
Gong, L., Jiang, C., Liu, L., Wan, S., Tan, W., Ma, S., et al. (2017) Transfection of Neurotrophin-3 into Neural Stem Cells Using Ultrasound with Microbubbles to Treat Denervated Muscle Atrophy. Experimental and Therapeutic Medicine, 15, 620-626. https://doi.org/10.3892/etm.2017.5439 |
[28] |
Mellott, A.J., Forrest, M.L. and Detamore, M.S. (2012) Physical Non-Viral Gene Delivery Methods for Tissue Engineering. Annals of Biomedical Engineering, 41, 446-468. https://doi.org/10.1007/s10439-012-0678-1 |
[29] |
Xu, X., et al. (2011) Encapsulation of Plasmid DNA in Calcium Phosphate Nanoparticles: Stem Cell Uptake and Gene Transfer Efficiency. International Journal of Nanomedicine, 6, 3335-3349. https://doi.org/10.2147/ijn.s27370 |
[30] |
Salvador, J., Berthelot, J., Bony, C., Robin, B., Him, J.L.K., Noël, D., et al. (2022) Size-Tunable Lipid Vectors for Controlled Local Delivery of siRNA from Gene Activated Matrix. Acta Biomaterialia, 153, 97-107. https://doi.org/10.1016/j.actbio.2022.09.016 |
[31] |
Li, L., et al. (2012) Cationic Lipid-Coated PEI/DNA Polyplexes with Improved Efficiency and Reduced Cytotoxicity for Gene Delivery into Mesenchymal Stem Cells. International Journal of Nanomedicine, 7, 4637-4648. https://doi.org/10.2147/ijn.s33923 |
[32] |
Benoit, D.S.W. and Boutin, M.E. (2012) Controlling Mesenchymal Stem Cell Gene Expression Using Polymer-Mediated Delivery of siRNA. Biomacromolecules, 13, 3841-3849. https://doi.org/10.1021/bm301294n |
[33] |
Kong, L., Alves, C.S., Hou, W., Qiu, J., Möhwald, H., Tomás, H., et al. (2015) RGD Peptide-Modified Dendrimer-Entrapped Gold Nanoparticles Enable Highly Efficient and Specific Gene Delivery to Stem Cells. ACS Applied Materials & Interfaces, 7, 4833-4843. https://doi.org/10.1021/am508760w |
[34] |
Janik, E., Niemcewicz, M., Ceremuga, M., Krzowski, L., Saluk-Bijak, J. and Bijak, M. (2020) Various Aspects of a Gene Editing System—CRISPR-Cas9. International Journal of Molecular Sciences, 21, Article No. 9604. https://doi.org/10.3390/ijms21249604 |
[35] |
Sun, S., Xiao, J., Huo, J., Geng, Z., Ma, K., Sun, X., et al. (2018) Targeting Ectodysplasin Promotor by CRISPR/Dcas9-Effector Effectively Induces the Reprogramming of Human Bone Marrow-Derived Mesenchymal Stem Cells into Sweat Gland-Like Cells. Stem Cell Research & Therapy, 9, Article No. 8. https://doi.org/10.1186/s13287-017-0758-0 |
[36] |
Cavazza, A., Moiani, A. and Mavilio, F. (2013) Mechanisms of Retroviral Integration and Mutagenesis. Human Gene Therapy, 24, 119-131. https://doi.org/10.1089/hum.2012.203 |
[37] |
Park, J.S., Suryaprakash, S., Lao, Y. and Leong, K.W. (2015) Engineering Mesenchymal Stem Cells for Regenerative Medicine and Drug Delivery. Methods, 84, 3-16. https://doi.org/10.1016/j.ymeth.2015.03.002 |
[38] |
Zhang, Z., Zhang, Y., Gao, F., Han, S., Cheah, K.S., Tse, H., et al. (2017) Crispr/Cas9 Genome-Editing System in Human Stem Cells: Current Status and Future Prospects. Molecular Therapy—Nucleic Acids, 9, 230-241. https://doi.org/10.1016/j.omtn.2017.09.009 |
[39] |
Wong, J.K.U., Mehta, A., Vũ, T.T. and Yeo, G.C. (2023) Cellular Modifications and Biomaterial Design to Improve Mesenchymal Stem Cell Transplantation. Biomaterials Science, 11, 4752-4773. https://doi.org/10.1039/d3bm00376k |
[40] |
Sarkar, D., Zhao, W., Gupta, A., Loh, W.L., Karnik, R. and Karp, J.M. (2011) Cell Surface Engineering of Mesenchymal Stem Cells. In: Vemuri, M., et al., Eds., Mesenchymal Stem Cell Assays and Applications, Humana Press, 505-523. https://doi.org/10.1007/978-1-60761-999-4_35 |
[41] |
Sun, W., Liu, W., Wu, Z. and Chen, H. (2020) Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromolecular Rapid Communications, 41, Article ID: 1900430. https://doi.org/10.1002/marc.201900430 |
[42] |
Hu, Q., Sun, W., Wang, J., Ruan, H., Zhang, X., Ye, Y., et al. (2018) Conjugation of Haematopoietic Stem Cells and Platelets Decorated with Anti-Pd-1 Antibodies Augments Anti-Leukaemia Efficacy. Nature Biomedical Engineering, 2, 831-840. https://doi.org/10.1038/s41551-018-0310-2 |
[43] |
Sackstein, R., Merzaban, J.S., Cain, D.W., Dagia, N.M., Spencer, J.A., Lin, C.P., et al. (2008) Ex Vivo Glycan Engineering of CD44 Programs Human Multipotent Mesenchymal Stromal Cell Trafficking to Bone. Nature Medicine, 14, 181-187. https://doi.org/10.1038/nm1703 |
[44] |
Ko, I.K., Kim, B., Awadallah, A., Mikulan, J., Lin, P., Letterio, J.J., et al. (2010) Targeting Improves MSC Treatment of Inflammatory Bowel Disease. Molecular Therapy, 18, 1365-1372. https://doi.org/10.1038/mt.2010.54 |
[45] |
Takayama, Y., Kusamori, K., Hayashi, M., Tanabe, N., Matsuura, S., Tsujimura, M., et al. (2017) Long-Term Drug Modification to the Surface of Mesenchymal Stem Cells by the Avidin-Biotin Complex Method. Scientific Reports, 7, Article No. 16953. https://doi.org/10.1038/s41598-017-17166-8 |
[46] |
Sarkar, D., Spencer, J.A., Phillips, J.A., Zhao, W., Schafer, S., Spelke, D.P., et al. (2011) Engineered Cell Homing. Blood, 118, e184-e191. https://doi.org/10.1182/blood-2010-10-311464 |
[47] |
Khayambashi, P., Iyer, J., Pillai, S., Upadhyay, A., Zhang, Y. and Tran, S. (2021) Hydrogel Encapsulation of Mesenchymal Stem Cells and Their Derived Exosomes for Tissue Engineering. International Journal of Molecular Sciences, 22, Article No. 684. https://doi.org/10.3390/ijms22020684 |
[48] |
Lee, J.K., Choi, I.S., Oh, T.I. and Lee, E. (2018) Cell‐Surface Engineering for Advanced Cell Therapy. Chemistry—A European Journal, 24, 15725-15743. https://doi.org/10.1002/chem.201801710 |
[49] |
El-Rashidy, A.A., El Moshy, S., Radwan, I.A., Rady, D., Abbass, M.M.S., Dörfer, C.E., et al. (2021) Effect of Polymeric Matrix Stiffness on Osteogenic Differentiation of Mesenchymal Stem/Progenitor Cells: Concise Review. Polymers, 13, Article No. 2950. https://doi.org/10.3390/polym13172950 |
[50] |
Thompson, M., Woods, K., Newberg, J., Oxford, J.T. and Uzer, G. (2020) Low-Intensity Vibration Restores Nuclear YAP Levels and Acute YAP Nuclear Shuttling in Mesenchymal Stem Cells Subjected to Simulated Microgravity. NPJ Microgravity, 6, Article No. 35. https://doi.org/10.1038/s41526-020-00125-5 |
[51] |
Zhang, C., Zhu, H., Ren, X., Gao, B., Cheng, B., Liu, S., et al. (2021) Mechanics-Driven Nuclear Localization of YAP Can Be Reversed by N-Cadherin Ligation in Mesenchymal Stem Cells. Nature Communications, 12, Article No. 6229. https://doi.org/10.1038/s41467-021-26454-x |
[52] |
Wang, T., Ouyang, H., Luo, Y., Xue, J., Wang, E., Zhang, L., et al. (2024) Rehabilitation Exercise-Driven Symbiotic Electrical Stimulation System Accelerating Bone Regeneration. Science Advances, 10, eadi6799. https://doi.org/10.1126/sciadv.adi6799 |
[53] |
Bianconi, S., Oliveira, K.M.C., Klein, K., Wolf, J., Schaible, A., Schröder, K., et al. (2023) Pretreatment of Mesenchymal Stem Cells with Electrical Stimulation as a Strategy to Improve Bone Tissue Engineering Outcomes. Cells, 12, Article No. 2151. https://doi.org/10.3390/cells12172151 |
[54] |
Jia, Y., Le, H., Wang, X., Zhang, J., Liu, Y., Ding, J., et al. (2023) Double-Edged Role of Mechanical Stimuli and Underlying Mechanisms in Cartilage Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1271762. https://doi.org/10.3389/fbioe.2023.1271762 |
[55] |
Langer, R. and Vacanti, J. (2016) Advances in Tissue Engineering. Journal of Pediatric Surgery, 51, 8-12. https://doi.org/10.1016/j.jpedsurg.2015.10.022 |
[56] |
Liu, Y., Intini, C., Dobricic, M., O'Brien, F.J., LLorca, J. and Echeverry-Rendon, M. (2024) Collagen-Based 3D Printed Poly(Glycerol Sebacate) Composite Scaffold with Biomimicking Mechanical Properties for Enhanced Cartilage Defect Repair. International Journal of Biological Macromolecules, 280, Article ID: 135827. https://doi.org/10.1016/j.ijbiomac.2024.135827 |
[57] |
Alksne, M., Kalvaityte, M., Simoliunas, E., Gendviliene, I., Barasa, P., Rinkunaite, I., et al. (2022) Dental Pulp Stem Cell-Derived Extracellular Matrix: Autologous Tool Boosting Bone Regeneration. Cytotherapy, 24, 597-607. https://doi.org/10.1016/j.jcyt.2022.02.002 |
[58] |
Kim, Y.S., Chien, A.J., Guo, J.L., Smith, B.T., Watson, E., Pearce, H.A., et al. (2020) Chondrogenesis of Cocultures of Mesenchymal Stem Cells and Articular Chondrocytes in Poly(l-lysine)-Loaded Hydrogels. Journal of Controlled Release, 328, 710-721. https://doi.org/10.1016/j.jconrel.2020.09.048 |
[59] |
Ghasempour, A., Dehghan, H., Mahmoudi, M. and Lavi Arab, F. (2024) Biomimetic Scaffolds Loaded with Mesenchymal Stem Cells (MSCs) or MSC-Derived Exosomes for Enhanced Wound Healing. Stem Cell Research & Therapy, 15, Article No. 406. https://doi.org/10.1186/s13287-024-04012-8 |
[60] |
Moreira, F., Mizukami, A., de Souza, L.E.B., Cabral, J.M.S., da Silva, C.L., Covas, D.T., et al. (2020) Corrigendum: Successful Use of Human AB Serum to Support the Expansion of Adipose Tissue-Derived Mesenchymal Stem/Stromal Cell in a Microcarrier-Based Platform. Frontiers in Bioengineering and Biotechnology, 8, Article ID: 594582. https://doi.org/10.3389/fbioe.2020.594582 |
[61] |
Confalonieri, D., Schwab, A., Walles, H. and Ehlicke, F. (2018) Advanced Therapy Medicinal Products: A Guide for Bone Marrow-Derived MSC Application in Bone and Cartilage Tissue Engineering. Tissue Engineering Part B: Reviews, 24, 155-169. https://doi.org/10.1089/ten.teb.2017.0305 |
[62] |
Bunpetch, V., Zhang, Z., Zhang, X., Han, S., Zongyou, P., Wu, H., et al. (2019) Strategies for MSC Expansion and MSC-Based Microtissue for Bone Regeneration. Biomaterials, 196, 67-79. https://doi.org/10.1016/j.biomaterials.2017.11.023 |
[63] |
Koga, K., Wang, B. and Kaneko, S. (2020) Current Status and Future Perspectives of Hla-Edited Induced Pluripotent Stem Cells. Inflammation and Regeneration, 40, Article No. 23. https://doi.org/10.1186/s41232-020-00132-9 |
[64] |
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007) Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131, 861-872. https://doi.org/10.1016/j.cell.2007.11.019 |
[65] |
Huerta, C.T., Ortiz, Y.Y., Li, Y., Ribieras, A.J., Voza, F., Le, N., et al. (2023) Novel Gene-Modified Mesenchymal Stem Cell Therapy Reverses Impaired Wound Healing in Ischemic Limbs. Annals of Surgery, 278, 383-395. https://doi.org/10.1097/sla.0000000000005949 |
[66] |
Shams, F., Pourjabbar, B., Hashemi, N., Farahmandian, N., Golchin, A., Nuoroozi, G., et al. (2023) Current Progress in Engineered and Nano-Engineered Mesenchymal Stem Cells for Cancer: From Mechanisms to Therapy. Biomedicine & Pharmacotherapy, 167, Article ID: 115505. https://doi.org/10.1016/j.biopha.2023.115505 |
[67] |
Nethi, S.K., Li, X., Bhatnagar, S. and Prabha, S. (2023) Enhancing Anticancer Efficacy of Chemotherapeutics Using Targeting Ligand-Functionalized Synthetic Antigen Receptor-Mesenchymal Stem Cells. Pharmaceutics, 15, Article No. 1742. https://doi.org/10.3390/pharmaceutics15061742 |
[68] |
Won, Y., Patel, A.N. and Bull, D.A. (2014) Cell Surface Engineering to Enhance Mesenchymal Stem Cell Migration toward an SDF-1 Gradient. Biomaterials, 35, 5627-5635. https://doi.org/10.1016/j.biomaterials.2014.03.070 |