[1] |
陈然, 罗颖, 杨军, 等. 免疫出生错误分类更新(2022版)解读[J]. 中华儿科杂志, 2022, 60(12): 1262-1265. |
[2] |
Bongomin, F., Gago, S., Oladele, R. and Denning, D. (2017) Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. Journal of Fungi, 3, Article No. 57. https://doi.org/10.3390/jof3040057 |
[3] |
Lionakis, M.S., Drummond, R.A. and Hohl, T.M. (2023) Immune Responses to Human Fungal Pathogens and Therapeutic Prospects. Nature Reviews Immunology, 23, 433-452. https://doi.org/10.1038/s41577-022-00826-w |
[4] |
Fisher, M.C., Alastruey-Izquierdo, A., Berman, J., Bicanic, T., Bignell, E.M., Bowyer, P., et al. (2022) Tackling the Emerging Threat of Antifungal Resistance to Human Health. Nature Reviews Microbiology, 20, 557-571. https://doi.org/10.1038/s41579-022-00720-1 |
[5] |
Tangye, S.G. and Puel, A. (2023) The Th17/Il-17 Axis and Host Defense against Fungal Infections. The Journal of Allergy and Clinical Immunology: In Practice, 11, 1624-1634. https://doi.org/10.1016/j.jaip.2023.04.015 |
[6] |
Asano, T., Utsumi, T., Kagawa, R., Karakawa, S. and Okada, S. (2022) Inborn Errors of Immunity with Loss-and Gain-of-Function Germline Mutations in STAT1. Clinical and Experimental Immunology, 212, 96-106. https://doi.org/10.1093/cei/uxac106 |
[7] |
Okada, S., Asano, T., Moriya, K., Boisson-Dupuis, S., Kobayashi, M., Casanova, J., et al. (2020) Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy. Journal of Clinical Immunology, 40, 1065-1081. https://doi.org/10.1007/s10875-020-00847-x |
[8] |
Cifaldi, C., Ursu, G.M., D’Alba, I., Paccoud, O., Danion, F., Lanternier, F., et al. (2022) Main Human Inborn Errors of Immunity Leading to Fungal Infections. Clinical Microbiology and Infection, 28, 1435-1440. https://doi.org/10.1016/j.cmi.2022.06.031 |
[9] |
史冬梅, 刘维达. IL-17相关信号通路分子先天免疫缺陷在慢性黏膜皮肤念珠菌病中的研究及免疫治疗进展[J]. 中华微生物学和免疫学杂志, 2020, 40(1): 74-82. |
[10] |
卢晓迪, 张蕾, 都琳, 等. 慢性皮肤黏膜念珠菌病的免疫致病机制及新型治疗方法[J]. 世界临床药物, 2023, 44(8): 851-857. |
[11] |
Puel, A. (2020) Human Inborn Errors of Immunity Underlying Superficial or Invasive Candidiasis. Human Genetics, 139, 1011-1022. https://doi.org/10.1007/s00439-020-02141-7 |
[12] |
Pathakumari, B., Liang, G. and Liu, W. (2020) Immune Defence to Invasive Fungal Infections: A Comprehensive Review. Biomedicine & Pharmacotherapy, 130, Article ID: 110550. https://doi.org/10.1016/j.biopha.2020.110550 |
[13] |
Lass-Flörl, C., Kanj, S.S., Govender, N.P., Thompson, G.R., Ostrosky-Zeichner, L. and Govrins, M.A. (2024) Invasive Candidiasis. Nature Reviews Disease Primers, 10, Article No. 20. https://doi.org/10.1038/s41572-024-00503-3 |
[14] |
Fernández-García, O.A. and Cuellar-Rodríguez, J.M. (2021) Immunology of Fungal Infections. Infectious Disease Clinics of North America, 35, 373-388. https://doi.org/10.1016/j.idc.2021.03.006 |
[15] |
Brown, G.D., Denning, D.W., Gow, N.A.R., Levitz, S.M., Netea, M.G. and White, T.C. (2012) Hidden Killers: Human Fungal Infections. Science Translational Medicine, 4, 165rv113. https://doi.org/10.1126/scitranslmed.3004404 |
[16] |
Amitani, R., Murayama, T., Nawada, R., Lee, W., Niimi, A., Suzuki, K., et al. (1995) Aspergillus Culture Filtrates and Sputum Sols from Patients with Pulmonary Aspergillosis Cause Damage to Human Respiratory Ciliated Epithelium in Vitro. European Respiratory Journal, 8, 1681-1687. https://doi.org/10.1183/09031936.95.08101681 |
[17] |
Lionakis, M.S. and Levitz, S.M. (2018) Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annual Review of Immunology, 36, 157-191. https://doi.org/10.1146/annurev-immunol-042617-053318 |
[18] |
Winkelstein, J.A., Marino, M.C., Johnston, R.B., Boyle, J., Curnutte, J., Gallin, J.I., et al. (2000) Chronic Granulomatous Disease: Report on a National Registry of 368 Patients. Medicine, 79, 155-169. https://doi.org/10.1097/00005792-200005000-00003 |
[19] |
Marciano, B.E., Spalding, C., Fitzgerald, A., Mann, D., Brown, T., Osgood, S., et al. (2014) Common Severe Infections in Chronic Granulomatous Disease. Clinical Infectious Diseases, 60, 1176-1183. https://doi.org/10.1093/cid/ciu1154 |
[20] |
Danion, F., Aimanianda, V., Bayry, J., Duréault, A., Wong, S.S.W., Bougnoux, M., et al. (2020) Aspergillus Fumigatus Infection in Humans with Stat3-Deficiency Is Associated with Defective Interferon-Gamma and Th17 Responses. Frontiers in Immunology, 11, Article No. 38. https://doi.org/10.3389/fimmu.2020.00038 |
[21] |
Duréault, A., Tcherakian, C., Poiree, S., Catherinot, E., Danion, F., Jouvion, G., et al. (2019) Spectrum of Pulmonary Aspergillosis in Hyper-Ige Syndrome with Autosomal-Dominant STAT3 Deficiency. The Journal of Allergy and Clinical Immunology: In Practice, 7, 1986-1995.e3. https://doi.org/10.1016/j.jaip.2019.02.041 |
[22] |
Vinh, D.C., Sugui, J.A., Hsu, A.P., Freeman, A.F. and Holland, S.M. (2010) Invasive Fungal Disease in Autosomal-Dominant Hyper-Ige Syndrome. Journal of Allergy and Clinical Immunology, 125, 1389-1390. https://doi.org/10.1016/j.jaci.2010.01.047 |
[23] |
Rieber, N., Gazendam, R.P., Freeman, A.F., Hsu, A.P., Collar, A.L., Sugui, J.A., et al. (2016) Extrapulmonary Aspergillus Infection in Patients with CARD9 Deficiency. JCI Insight, 1, e89890. https://doi.org/10.1172/jci.insight.89890 |
[24] |
Oleaga-Quintas, C., de Oliveira-Júnior, E.B., Rosain, J., Rapaport, F., Deswarte, C., Guérin, A., et al. (2021) Inherited GATA2 Deficiency Is Dominant by Haploinsufficiency and Displays Incomplete Clinical Penetrance. Journal of Clinical Immunology, 41, 639-657. https://doi.org/10.1007/s10875-020-00930-3 |
[25] |
Casadevall, A. (2022) Immunity to Invasive Fungal Diseases. Annual Review of Immunology, 40, 121-141. https://doi.org/10.1146/annurev-immunol-101220-034306 |
[26] |
Browne, S.K., Burbelo, P.D., Chetchotisakd, P., Suputtamongkol, Y., Kiertiburanakul, S., Shaw, P.A., et al. (2012) New England Journal of Medicine, 367, 725-734. https://doi.org/10.1056/nejmoa1111160 |
[27] |
Kannambath, S., Jarvis, J.N., Wake, R.M., Longley, N., Loyse, A., Matzaraki, V., et al. (2020) Genome-Wide Association Study Identifies Novel Colony Stimulating Factor 1 Locus Conferring Susceptibility to Cryptococcosis in Human Immunodeficiency Virus-Infected South Africans. Open Forum Infectious Diseases, 7, ofaa489. https://doi.org/10.1093/ofid/ofaa489 |
[28] |
Vinh, D.C., Patel, S.Y., Uzel, G., Anderson, V.L., Freeman, A.F., Olivier, K.N., et al. (2010) Autosomal Dominant and Sporadic Monocytopenia with Susceptibility to Mycobacteria, Fungi, Papillomaviruses, and Myelodysplasia. Blood, 115, 1519-1529. https://doi.org/10.1182/blood-2009-03-208629 |
[29] |
Jenks, J.D., Cornely, O.A., Chen, S.C., Thompson, G.R. and Hoenigl, M. (2020) Breakthrough Invasive Fungal Infections: Who Is at Risk? Mycoses, 63, 1021-1032. https://doi.org/10.1111/myc.13148 |
[30] |
Armstrong-James, D., Brown, G.D., Netea, M.G., Zelante, T., Gresnigt, M.S., van de Veerdonk, F.L., et al. (2017) Immunotherapeutic Approaches to Treatment of Fungal Diseases. The Lancet Infectious Diseases, 17, e393-e402. https://doi.org/10.1016/s1473-3099(17)30442-5 |
[31] |
Kullberg, B.J., Lashof, A.M.L.O. and Netea, M.G. (2004) Design of Efficacy Trials of Cytokines in Combination with Antifungal Drugs. Clinical Infectious Diseases, 39, S218-S223. https://doi.org/10.1086/421960 |
[32] |
Wan, L., Zhang, Y., Lai, Y., Jiang, M., Song, Y., Zhou, J., et al. (2015) Effect of Granulocyte-Macrophage Colony-Stimulating Factor on Prevention and Treatment of Invasive Fungal Disease in Recipients of Allogeneic Stem-Cell Transplantation: A Prospective Multicenter Randomized Phase IV Trial. Journal of Clinical Oncology, 33, 3999-4006. https://doi.org/10.1200/jco.2014.60.5121 |
[33] |
Nemunaitis, J., Shannon-Dorcy, K., Appelbaum, F., Meyers, J., Owens, A., Day, R., et al. (1993) Long-Term Follow-Up of Patients with Invasive Fungal Disease Who Received Adjunctive Therapy with Recombinant Human Macrophage Colony-Stimulating Factor. Blood, 82, 1422-1427. https://doi.org/10.1182/blood.v82.5.1422.1422 |
[34] |
Groll, A., Renz, S., Gerein, V., Schwabe, D., Katschan, G., Schneider, M., et al. (1992) Fatal Haemoptysis Associated with Invasive Pulmonary Aspergillosis Treated with High‐Dose Amphotericin B and Granulocyte‐Macrophage Colony‐stimulating Factor (GM-CSF). Mycoses, 35, 67-75. https://doi.org/10.1111/j.1439-0507.1992.tb00822.x |
[35] |
Group, I.C.G.D.C.S. (1991) A Controlled Trial of Interferon Gamma to Prevent Infection in Chronic Granulomatous Disease. New England Journal of Medicine, 324, 509-516. https://doi.org/10.1056/nejm199102213240801 |
[36] |
Jarvis, J.N., Meintjes, G., Rebe, K., Williams, G.N., Bicanic, T., Williams, A., et al. (2012) Adjunctive Interferon-γ Immunotherapy for the Treatment of HIV-Associated Cryptococcal Meningitis: A Randomized Controlled Trial. AIDS, 26, 1105-1113. https://doi.org/10.1097/qad.0b013e3283536a93 |
[37] |
Bandera, A., Trabattoni, D., Ferrario, G., Cesari, M., Franzetti, F., Clerici, M., et al. (2008) Interferon-γ and Granulocyte-Macrophage Colony Stimulating Factor Therapy in Three Patients with Pulmonary Aspergillosis. Infection, 36, 368-373. https://doi.org/10.1007/s15010-008-7378-7 |
[38] |
Perruccio, K., Tosti, A., Burchielli, E., Topini, F., Ruggeri, L., Carotti, A., et al. (2005) Transferring Functional Immune Responses to Pathogens after Haploidentical Hematopoietic Transplantation. Blood, 106, 4397-4406. https://doi.org/10.1182/blood-2005-05-1775 |
[39] |
Seif, M., Kakoschke, T.K., Ebel, F., Bellet, M.M., Trinks, N., Renga, G., et al. (2022) CAR T Cells Targeting Aspergillus fumigatus Are Effective at Treating Invasive Pulmonary Aspergillosis in Preclinical Models. Science Translational Medicine, 14, eabh1209. https://doi.org/10.1126/scitranslmed.abh1209 |
[40] |
Nikolajeva, O., Mijovic, A., Hess, D., Tatam, E., Amrolia, P., Chiesa, R., et al. (2015) Single-Donor Granulocyte Transfusions for Improving the Outcome of High-Risk Pediatric Patients with Known Bacterial and Fungal Infections Undergoing Stem Cell Transplantation: A 10-Year Single-Center Experience. Bone Marrow Transplantation, 50, 846-849. https://doi.org/10.1038/bmt.2015.53 |
[41] |
Cowen, L.E. and Lindquist, S. (2005) Hsp90 Potentiates the Rapid Evolution of New Traits: Drug Resistance in Diverse Fungi. Science, 309, 2185-2189. https://doi.org/10.1126/science.1118370 |
[42] |
Watkins, T.N., Gebremariam, T., Swidergall, M., Shetty, A.C., Graf, K.T., Alqarihi, A., et al. (2018) Inhibition of EGFR Signaling Protects from Mucormycosis. mBio, 9, e01384-18. https://doi.org/10.1128/mbio.01384-18 |
[43] |
Tsai, M., Thauland, T.J., Huang, A.Y., Bun, C., Fitzwater, S., Krogstad, P., et al. (2020) Disseminated Coccidioidomycosis Treated with Interferon-Γ and Dupilumab. New England Journal of Medicine, 382, 2337-2343. https://doi.org/10.1056/nejmoa2000024 |
[44] |
Weinacht, K.G., Charbonnier, L., Alroqi, F., Plant, A., Qiao, Q., Wu, H., et al. (2017) Ruxolitinib Reverses Dysregulated T Helper Cell Responses and Controls Autoimmunity Caused by a Novel Signal Transducer and Activator of Transcription 1 (STAT1) Gain-of-Function Mutation. Journal of Allergy and Clinical Immunology, 139, 1629-1640.e2. https://doi.org/10.1016/j.jaci.2016.11.022 |
[45] |
Higgins, E., Al Shehri, T., McAleer, M.A., Conlon, N., Feighery, C., Lilic, D., et al. (2015) Use of Ruxolitinib to Successfully Treat Chronic Mucocutaneous Candidiasis Caused by Gain-of-Function Signal Transducer and Activator of Transcription 1 (STAT1) Mutation. Journal of Allergy and Clinical Immunology, 135, 551-553.e3. https://doi.org/10.1016/j.jaci.2014.12.1867 |
[46] |
Meesilpavikkai, K., Dik, W.A., Schrijver, B., Nagtzaam, N.M.A., Posthumus-van Sluijs, S.J., van Hagen, P.M., et al. (2018) Baricitinib Treatment in a Patient with a Gain-of-Function Mutation in Signal Transducer and Activator of Transcription 1 (STAT1). Journal of Allergy and Clinical Immunology, 142, 328-330.e2. https://doi.org/10.1016/j.jaci.2018.02.045 |
[47] |
Toubiana, J., Okada, S., Hiller, J., Oleastro, M., Lagos Gomez, M., Aldave Becerra, J.C., et al. (2016) Heterozygous STAT1 Gain-of-Function Mutations Underlie an Unexpectedly Broad Clinical Phenotype. Blood, 127, 3154-3164. https://doi.org/10.1182/blood-2015-11-679902 |
[48] |
De Bernardis, F., Santoni, G., Boccanera, M., Lucciarini, R., Arancia, S., Sandini, S., et al. (2010) Protection against Rat Vaginal Candidiasis by Adoptive Transfer of Vaginal B Lymphocytes. FEMS Yeast Research, 10, 432-440. https://doi.org/10.1111/j.1567-1364.2010.00620.x |
[49] |
Schmidt, C.S., White, C.J., Ibrahim, A.S., Filler, S.G., Fu, Y., Yeaman, M.R., et al. (2012) NDV-3, a Recombinant Alum-Adjuvanted Vaccine for Candida and Staphylococcus Aureus, Is Safe and Immunogenic in Healthy Adults. Vaccine, 30, 7594-7600. https://doi.org/10.1016/j.vaccine.2012.10.038 |
[50] |
Pappagianis, D. (1993) Evaluation of the Protective Efficacy of the Killed Coccidioides immitis Spherule Vaccine in Humans. American Review of Respiratory Disease, 148, 656-660. https://doi.org/10.1164/ajrccm/148.3.656 |
[51] |
De Bernardis, F., Graziani, S., Tirelli, F. and Antonopoulou, S. (2018) Candida Vaginitis: Virulence, Host Response and Vaccine Prospects. Medical Mycology, 56, S26-S31. https://doi.org/10.1093/mmy/myx139 |
[52] |
Edwards, J.E., Schwartz, M.M., Schmidt, C.S., Sobel, J.D., Nyirjesy, P., Schodel, F., et al. (2018) A Fungal Immunotherapeutic Vaccine (NDV-3A) for Treatment of Recurrent Vulvovaginal Candidiasis—A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial. Clinical Infectious Diseases, 66, 1928-1936. https://doi.org/10.1093/cid/ciy185 |
[53] |
Shubitz, L.F., Yu, J., Hung, C., Kirkland, T.N., Peng, T., Perrill, R., et al. (2006) Improved Protection of Mice against Lethal Respiratory Infection with Coccidioides posadasii Using Two Recombinant Antigens Expressed as a Single Protein. Vaccine, 24, 5904-5911. https://doi.org/10.1016/j.vaccine.2006.04.002 |