免疫出生缺陷的真菌易感机制及新型抗真菌治疗
The Fungal Susceptibility Mechanism of Inborn Errors of Immunity and Novel Antifungal Therapies
DOI: 10.12677/acm.2025.151302, PDF, HTML, XML,   
作者: 陈香霓, 张志勇*:重庆医科大学附属儿童医院风湿免疫科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: 免疫出生缺陷真菌致病机制新型抗真菌治疗Inborn Errors of Immunity Fungi Pathogenic Mechanism Novel Antifungal Therapies
摘要: 免疫出生缺陷(IEI)是由基因突变导致的,以免疫系统结构或功能受损为主要表现的临床综合征。IEI对真菌易感且感染较重,已成为该病患者死亡的重要原因之一。目前传统抗真菌药物存在毒副作用明显及耐药问题,导致IEI患者抗真菌治疗困难。探究IEI常见易感真菌的致病机制及新型疗法有助于开展早期、有效诊疗,改善患者预后。
Abstract: Inborn errors of immunity (IEI) are clinical syndromes manifested by impaired immune system structure or function, induced by genetic mutations. Invasive fungal infections (IEI) are a significant cause of mortality in patients with this condition, as they are highly susceptible to fungal infections, which tend to be severe. At present, the application of traditional antifungal drugs shows significant toxic side effects and resistance problems, making antifungal treatment difficult for patients with IEI. The exploration of the pathogenic mechanisms and novel therapies of common susceptible fungi in IEI can assist early and effective diagnosis and treatment, and improve the prognosis of patients.
文章引用:陈香霓, 张志勇. 免疫出生缺陷的真菌易感机制及新型抗真菌治疗[J]. 临床医学进展, 2025, 15(1): 2307-2316. https://doi.org/10.12677/acm.2025.151302

1. 引言

免疫出生缺陷(inborn errors of immunity, IEI)是由单个基因变异导致免疫细胞和分子的结构及功能变化而引起的一组疾病,感染是该病的标志性临床表现之一[1]。真菌感染多发生于免疫功能低下的人群,IEI患者由于先天性免疫功能缺陷,对真菌易感且致死率更高[2]。研究表明各类IEI易感真菌谱存在差异,提示不同基因突变可导致机体易感特异真菌[3],研究其易感机制有利于早期开展经验性抗真菌治疗。目前传统抗真菌药物由于其不良反应及耐药性问题,难以完全满足临床治疗的需要,且IEI患者由于免疫功能缺陷,即使有抗菌药物的辅助,也可能无法有效杀伤真菌。在此背景下,以增强机体免疫反应为基础的免疫疗法成为IEI患者抗真菌治疗的合理选择[4]。本文将探究IEI常见的易感真菌类型及其易感机制,并介绍以调节免疫反应为基础的新型抗真菌治疗。

2. IEI常见易感真菌及易感机制

2.1. 念珠菌

念珠菌常作为共生酵母菌存在,在免疫功能受损的个体中则可转变为致病菌,其中以白色念珠菌最常见[3]。在IEI患儿中,白色念珠菌感染常导致慢性皮肤黏膜念珠菌病及侵袭性念珠菌病。

2.1.1. 慢性皮肤黏膜念珠菌病

慢性皮肤黏膜念珠菌病(chronic mucocutaneous candidiasis, CMC)以皮肤、指甲、黏膜反复或持续的念珠菌感染为特征。白细胞介素17 (IL-17)受体介导的信号传导在机体防御念珠菌过程中发挥着重要作用(图1) [5],该通路中任何关键环节的缺陷都可能导致CMC。

信号转导和转录激活因子1(signal transducer and activator of transcription, STAT1)杂合子功能获得性 (gain-of-function, GOF)突变导致的STAT1去磷酸化障碍会增强细胞对干扰素αβγ及IL-27的应答,并抑制IL-6和IL-21的转录,从而影响信号转导和转录激活因子3 (signal transducer and activator of transcription 3, STAT3)介导的初始CD4+ T细胞向辅助性T细胞17 (helper T cell 17)转化(图1(b)) [6] [7],导致循环血中Th17细胞及外周血单个核细胞(Peripheral blood mononuclear cell, PBMC)产生的IL-17数量减少,从而引发CMC。

信号转导和转录激活因子3 (signal transducer and activator of transcription, STAT3)失功能(loss-of-function, LOF)突变可引起常染色体显性遗传(autosomal dominant, AD)高IgE综合征(hyper immunoglobulin E syndromes, HIE)。STAT3经IL-6、IL-23激活,通过视黄酸受体相关孤儿受体γt (RORγt)诱导Th17分化并产生IL-17、IL-22 (图1(b)) [3],STAT3 LOF突变的患者因其初始CD4+ T细胞无法上调RORC (编码RORγt)的表达进而导致Th17分化障碍[5],从而影响机体抗念珠菌免疫反应。研究表明约85%的AD-HIE患者会出现CMC [8],常表现为口腔、指甲、生殖器部位的白色念珠菌感染。另外,ZNF341及DOCK8突变可引起常染色体隐性遗传(autosomal recessive, AR)高IgE综合征。ZNF341可调节STAT3的表达和功能,对于维持STAT3的活性至关重要,ZNF341缺陷的患者其STAT3 mRNA和蛋白表达水平较低,对STAT3活化细胞因子的反应较差。而DOCK8突变则损害CD4+ T细胞向Th17转化[5] [9]。两者均通过影响Th17的数量及IL-17、IL-22等细胞因子的生成增加机体对CMC的易感性。

(a) 中性粒细胞和树突状细胞表面的Dectin-1受体和Toll样受体2 (TLR2)可识别念珠菌并产生促炎因子。(b) 细胞因子通过STAT3激活RORγ蛋白,使CD4+幼稚T细胞转化为Th17。Th17细胞产生IL-17A、IL-17F和IL-22。IL-17A、IL-17F与上皮细胞上的IL-17R结合,从而激活ACT1并诱导产生限制念珠菌生长的抗菌肽。IL-22与基底上皮细胞上的IL-22受体结合,激活STAT3,促进上皮细胞增殖和修复,使表达IL-17R的基底上皮细胞层得到补充。(c) 在自身免疫调节因子(AIRE)缺陷的情况下,粘膜CD 4 + Th1细胞在组织局部产生高水平干扰素-γ (IFNγ),其与上皮细胞上的IFNγ受体结合,激活STAT1并损害口腔上皮屏障完整性,导致机体对念珠菌病的易感性增加。

Figure 1. Host defence against Candida

1. 宿主抗念珠菌机制

自身免疫调节剂(autoimmune regulator, AIRE)基因突变可导致自身免疫性多发性内分泌病–念珠菌病–外胚层营养不良(autoimmune polyendocrinopathy-dandidiasisectodermal dystrophy, APECED),又称自身免疫性多腺体综合征I型(autoimmune polyglandular syndronme type, APS)-I。该病临床上常表现为甲状旁腺功能减退、CMC和肾上腺功能不全,称为APECED三联征[10]。AIRE突变的患者其粘膜局部CD4+Th1细胞和CD8+ T细胞产生干扰素-γ (IFNγ)水平升高,IFNγ与上皮细胞上的IFNγ受体结合,激活STAT1并损害上皮屏障的完整性,导致皮肤黏膜对念珠菌的易感性增加(图1(c)) [8]。此外,合并CMC的APECED患者体内可产生中和IL-17A,IL-17F和IL-22的自身抗体,进而降低机体对念珠菌病的免疫应答,导致CMC [5] [11]

2.1.2. 侵袭性念珠菌病

侵袭性念珠菌病(invasive candidiasis, IC)是指由念珠菌引起的血液感染和(或)深部器官感染[12]。其中以白色念珠菌引起的IC最常见。IC常发生于免疫功能缺陷的患者,即使经过积极的治疗,其死亡率也高达约40% [13]

C型凝集素抗体(CLR)介导的信号通路对念珠菌属的免疫反应至关重要[14]。在免疫功能正常的宿主中,吞噬细胞表面的C型凝集素抗体(CLR)可识别念珠菌表面抗原,并通过激酶SYK和CARD9-MALT1-BCL复合物激活下游的NF-κB,共同促进Th17细胞的发育和促炎因子、趋化因子的产生,进而增加吞噬细胞的募集并增强其杀伤功能[13]。因此,表现为中性粒细胞数量减少、吞噬细胞趋化募集及氧化爆发功能障碍的IEI患者对IC易感,包括严重先天性中性粒细胞减少症(severe congenital neutropenia, SCN)、白细胞黏附缺陷症(leukocyte adhesion, LAD)I型、CARD9基因缺陷等。

2.2. 曲霉菌

曲霉菌病是一种危及生命的真菌感染,在IEI患者中易进展为侵袭性曲霉菌病(invasive aspergillosi, IA)。IA多由烟曲霉菌引起,常表现为肺部感染,全球死亡率约30%~95% [15]。机体抗曲霉菌感染主要依靠吞噬细胞识别真菌表面抗原启动促炎反应,并募集中性粒细胞到感染部位对病原进行杀伤[16]。吞噬细胞数量和功能缺陷的IEI患儿易发生IA。

2.2.1. CYBB突变

慢性肉芽肿病(chronic granulomatous disease, CGD)由CYBB突变引起,因患者体内吞噬细胞无法产生杀菌所必需的活性氧(ROS)而对IA易感,曲霉菌病是CGD的标志性感染表现[17]。有研究表明曲霉菌是CGD合并真菌感染最常见的病原,也是影响CGD患儿生存率的重要因素[18] [19]

2.2.2. STAT3-LOF突变

STAT3-LOF是高IgE综合征(HIES)的致病突变,HIES患者体内记忆B细胞和T细胞亚群受损,对细胞因子无法产生充分应答,表现出低抗菌活性,且这些患者的吞噬细胞未表现出任何吞噬或杀死曲霉菌的内在能力[20]。约20%的HIES患者患有肺曲霉菌病[21],可出现慢性空腔性肺曲霉病、变应性支气管肺曲霉病等多种临床表现[22]

2.2.3. CARD9突变

在免疫功能正常的个体中,吞噬细胞识别曲霉菌表面抗原后通过CLR依次激活SYK、CARD9–MALT1–BCL-10、NF-κB,进而释放促炎和趋化因子[17],募集保护性中性粒细胞至感染部位从而诱发宿主防御机制。CARD9突变的IEI患者存在吞噬细胞募集、活化、杀伤功能缺陷,因而对曲霉菌易感。而CARD9主要控制中性粒细胞募集到曲霉菌感染的肺外部位,因此CARD9缺陷的患者常表现为肺外的曲霉菌感染[23]

2.2.4. 其它IEI

GATA2突变是一种以吞噬细胞数量和功能异常为表现的IEI,患儿体内单核细胞和DC细胞计数减少、中性粒细胞颗粒异常,无法有效杀伤曲霉菌,进而对IA易感[3]。此外STAT1-GOF合并IA的病例也有报道[24]

2.3. 隐球菌

隐球菌病常由新型隐球菌和格特隐球菌引起,可在免疫功能低下的群体中引起脑膜炎[25]。肺内巨噬细胞通过与CD4+ T细胞的串扰来抑制和杀死吸入的隐球菌,是阻止其在肺内局部增殖和肺外传播的关键免疫检查点[3] [25]。影响淋巴细胞、单核细胞、巨噬细胞的数量和/或其功能的IEI是人类隐球菌病的基础。

IL12RB1-LOF患者因其T淋巴细胞产生IFNγ的功能受损,巨噬细胞无法对真菌进行胞内杀伤,进而导致隐球菌病[25]。GM-CSF可以促进巨噬细胞达到有效杀伤真菌的功能状态[26],是机体抗隐球菌免疫的关键因子,由体内存在GM-CSF自身抗体引起的拟表型免疫缺陷病(拟CM-CSF受体α缺陷表现)对隐球菌易感性增加[27]。此外,GATA2缺陷的患者因其吞噬细胞功能缺陷、单核细胞数量减少,也表现出对隐球菌易感[28]

3. 新型抗真菌治疗

对于真菌感染,抗真菌药物仍是一线治疗方案。目前常用的药物主要有唑类、多烯类、烯丙胺类、棘白素类和嘧啶类五大类。但传统抗真菌药物存在抗真菌谱窄、抗真菌活性弱及脏器损害等问题,加之近年来侵袭性真菌感染发病率升高,罕见真菌病原体及耐药菌不断出现[29],单纯使用抗真菌药物已不能完全满足当下的治疗需求[4]。免疫治疗通过增强机体免疫反应以达到清除真菌的效果,为免疫功能缺陷患者的抗真菌治疗提供了更多选择。本节将讨论基于调控机体免疫反应的新型抗真菌治疗,包括细胞因子治疗、单克隆抗体治疗、靶向治疗和真菌疫苗。

3.1. 重组细胞因子治疗

3.1.1. 集落刺激因子

集落刺激因子(Colony-stimulating factors, CSF)包括粒细胞集落刺激因子(G-CSF)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)和巨噬细胞集落刺激因子(M-CSF)。CSF有助于机体骨髓细胞群恢复和中性粒细胞活化[30]

G-CSF可用于恢复中性粒细胞减少患者的中性粒细胞数量并增强其抗真菌活性,因此G-CSF联合抗真菌药物在此类患者中表现出更好的治疗效果。在一项针对侵袭性念珠菌病患者的随机对照研究中,单用氟康唑治疗组的感染消退中位时间为21天,而G-CSF联合氟康唑治疗组的感染消退中位时间为14天[31],G-CSF联合抗真菌药物治疗表现出了更快控制感染的趋势。

GM-CSF通过刺激巨噬细胞上dectin-1的表达进而调控机体的抗真菌免疫反应。一项IV期临床试验显示,在异基因HSCT受者中给予GM-CSF可降低侵袭性念珠菌病的发生率和相关死亡率[32]

M-CSF通过特异性促进巨噬细胞的增殖和活化从而调控机体抗真菌反应。该疗法目前虽尚未获得美国食品和药物管理局(FDA)的临床批准,但各种临床试验已经探索了其作为抗真菌辅助治疗的效果。一项I/II期临床实验表明,经M-CSF治疗的患侵袭性真菌感染的骨髓移植患者其生存率(27%)较未使用者(5%)更高[33]

需要注意的是,尽管CSF在抗真菌治疗中显示出良好的效果,但由于细胞因子的促炎性质,治疗中可能出现毛细血管渗漏综合征、咯血、气胸并发症[34]。在临床实际中需要考虑其安全性后慎重使用。

3.1.2. 干扰素γ

干扰素γ (Interferon-γ, IFN-γ)通过刺激吞噬细胞产生ROS进而杀灭真菌,以此为基础的重组IFNγ已被批准用作预防CGD患者侵袭性真菌感染的免疫疗法[35],对念珠菌、曲霉菌、隐球菌表现出了良好的疗效[35]-[37]。同时,IFN-γ使机体免疫反应偏向保护性Th1反应[3],因此IFN-γ可作为Th1合成缺陷患者(如STAT 3或IL-12受体缺陷患者)的补充治疗。

3.2. 细胞免疫治疗

3.2.1. 过继性T细胞和嵌合抗原受体T细胞治疗

过继性T细胞疗法(Adoptive T-cell therapy)通过纯化、体外刺激和扩增供体或患者自身来源的T细胞,然后再输注回患者体内以重建免疫功能。该治疗通常在异基因造血干细胞移植后进行。在Perruccio等人开展的一项针对合并侵袭性曲霉菌感染的移植患者的研究中,相较于未接受细胞输注组,接受过继性T细胞治疗的患者其感染在更短时间内清除(7~10周) [38]

嵌合抗原受体T细胞(Chimeric antigen receptor T cell, CAR-T)疗法通过采集患者血液中的T细胞,经过基因转导等方式转染后使T细胞表面表达嵌合抗原受体,再将重新编码的CAR-T细胞进行培养、扩增,最终回输到患者体内。经嵌合抗原受体修饰后的T细胞不再具有MHC局限性,通过抗原结合即可活化,进而发挥特异、高效的杀伤功能。CAR-T通常被认为是一种癌症治疗方法,但目前研究人员一直在尝试将CAR-T技术用于其它非恶性疾病的治疗,例如在Michelle等人的研究报道中,对烟曲霉特异性嵌合抗原受体(Af-CAR) T细胞进行了基因工程改造,生成了一个CAR靶向结构域AB90-E8,该结构域可识别烟曲霉菌菌丝细胞壁中的保守蛋白抗原,产生直接且特异的抗真菌功能[39]。虽然CAR-T治疗是一种具有广阔前景的免疫疗法,但其存在神经毒性、细胞因子释放综合征等副作用,其安全性和普适性仍待更多临床研究的证实。

3.2.2. 粒细胞输注

吞噬细胞通过识别、募集、驱化及氧化爆发杀灭真菌,因此中性粒细胞数量及功能缺陷可增加机体真菌感染的风险。粒细胞输注(granulocyte transfusions, GTs)可通过恢复中性粒细胞计数以降低高危患者侵袭性真菌感染的发病率和死亡率。一项单中心回顾性研究表明,在28名接受GTs治疗的造血干细胞移植患者中,有64%的患者(18/28)存活,10例死亡患者中只有2例与感染进展有关,提示GTs可以为移植患者提供额外的抗感染(包括真菌)保护[40]

3.3. 单克隆抗体治疗

Mycograb (又称NeuTec Pharma)是一种针对热休克蛋白90 (HSP90)的人重组单克隆抗体,实验室研究发现该抗体与两性霉素B具有协同作用,对多种念珠菌具有广谱活性[41]。西妥昔单抗(cetuximab)通过对肺泡上皮细胞表面的β1整合素或EGFR进行抑制,从而阻止毛霉菌对肺泡上皮细胞的侵袭,研究提示使用西妥昔单抗可延长患肺毛霉菌病小鼠的生存期[42]。此外,Monica等人在2020年报道了一例患有难治性播散性球孢子菌患儿的治疗情况,该患儿在泊沙康唑和高剂量两性霉素B脂质体治疗下感染控制仍欠佳,经检测其体内IL-4水平显著升高,在抗真菌药物的基础上给予IL-4/IL-13受体抑制剂度匹鲁单抗(dupilumab)后,其感染得到了有效缓解[43]

由于目前对体液免疫在真菌防御中的作用缺乏更加深入的了解,这种基于抗体的抗真菌治疗技术发展受到了一定阻碍,且现下单克隆抗体的制造仍昂贵且困难,故抗真菌mAbs仍未进一步大规模投入临床使用。

3.4. 靶向治疗

研究表明鲁索替尼(ruxolitinib)和巴瑞替尼(baricitinib)对促进STAT-1 GOF患者体内Th17分化及IL-17生成具有积极作用[44]-[46],有助于减少慢性皮肤黏膜念珠菌病的发生。同时,JAK-STAT抑制剂可通过抑制JAK-STAT信号通路,减少IFN-γ的产生和反应,从而降低机体对口咽部念珠菌病的易感性[47]

3.5. 真菌疫苗

目前已有三种真菌疫苗进入临床试验阶段,分别是针对念珠菌的PEV7疫苗[48]、NDV-3疫苗[49]以及针对球孢子菌的甲酰胺灭活C.immitis疫苗[50]。PEV7和NDV-3疫苗在临床试验中均表现出了良好的安全性和免疫原性特征[51] [52],而C.immitis疫苗在III期临床试验中并未取得良好成效[50],因此,后续对基于抗原2/PRA (Ag2/ PRA)和球孢子菌特异性抗原(CSA)的重组抗原疫苗进行了开发,研究表明当联合给药时,这两种抗原可以提高球孢子菌病小鼠的存活率[53]

然而,由于IEI患者的免疫功能受损,具备高免疫原性的活疫苗虽然可以使其产生充分的保护性免疫应答,但却存在发生疫苗本身所致感染的风险,而灭活疫苗和亚单位疫苗虽相对安全,却可能无法引起IEI患者免疫系统的充分应答,后续仍可能发生真菌感染。因此,需要在疫苗的安全性和有效性之间保持微妙平衡。此外,从经济角度来看,开发一种只用于少数高危人群接种的疫苗并不符合成本效益,导致抗真菌疫苗在研发过程中面临着技术和资金的双重困难,因此迄今为止还没有临床批准投入使用的抗真菌疫苗。

4. 总结与展望

免疫出生缺陷患者因其免疫功能异常而对真菌易感,由于其感染后临床表现缺乏特异性,易导致误诊或诊断延迟,病死率高。而对IEI常见易感真菌谱及相应免疫机制的研究有助于早期抗真菌治疗的开展并帮助识别潜在IEI患者。对于确诊IEI的患儿,当常规抗菌治疗效果欠佳、怀疑真菌感染但无明确病原学证据时,可根据其易感真菌谱进行早期预防及经验性治疗。而对于既往未确诊IEI但合并深部真菌感染的患儿,在除外继发性真菌易感因素(如长期使用免疫抑制剂、继发性免疫缺陷等)后,需警惕IEI可能,建议进一步完善免疫功能筛查,必要时可完善基因检测以发现潜在的免疫出生缺陷。

在抗真菌治疗方面,传统抗真菌药物的毒副作用及耐药问题日益突出,难以完全满足临床治疗的需要,免疫辅助治疗已成为一种全新选择。相较于传统抗真菌药物,免疫辅助治疗具有安全性更高、耐药性更低的优势。传统抗真菌药物联合免疫辅助治疗有助于提高抗真菌治疗的疗效,进而改善患者预后。并且,近年来对于真菌致病机制的不断研究,越来越多的基因及细胞因子被证实在机体抗真菌保护性免疫中发挥着重要作用,使未来开展更加个性化、针对化的抗真菌靶向治疗成为可能。

NOTES

*通讯作者。

参考文献

[1] 陈然, 罗颖, 杨军, 等. 免疫出生错误分类更新(2022版)解读[J]. 中华儿科杂志, 2022, 60(12): 1262-1265.
[2] Bongomin, F., Gago, S., Oladele, R. and Denning, D. (2017) Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. Journal of Fungi, 3, Article No. 57.
https://doi.org/10.3390/jof3040057
[3] Lionakis, M.S., Drummond, R.A. and Hohl, T.M. (2023) Immune Responses to Human Fungal Pathogens and Therapeutic Prospects. Nature Reviews Immunology, 23, 433-452.
https://doi.org/10.1038/s41577-022-00826-w
[4] Fisher, M.C., Alastruey-Izquierdo, A., Berman, J., Bicanic, T., Bignell, E.M., Bowyer, P., et al. (2022) Tackling the Emerging Threat of Antifungal Resistance to Human Health. Nature Reviews Microbiology, 20, 557-571.
https://doi.org/10.1038/s41579-022-00720-1
[5] Tangye, S.G. and Puel, A. (2023) The Th17/Il-17 Axis and Host Defense against Fungal Infections. The Journal of Allergy and Clinical Immunology: In Practice, 11, 1624-1634.
https://doi.org/10.1016/j.jaip.2023.04.015
[6] Asano, T., Utsumi, T., Kagawa, R., Karakawa, S. and Okada, S. (2022) Inborn Errors of Immunity with Loss-and Gain-of-Function Germline Mutations in STAT1. Clinical and Experimental Immunology, 212, 96-106.
https://doi.org/10.1093/cei/uxac106
[7] Okada, S., Asano, T., Moriya, K., Boisson-Dupuis, S., Kobayashi, M., Casanova, J., et al. (2020) Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy. Journal of Clinical Immunology, 40, 1065-1081.
https://doi.org/10.1007/s10875-020-00847-x
[8] Cifaldi, C., Ursu, G.M., D’Alba, I., Paccoud, O., Danion, F., Lanternier, F., et al. (2022) Main Human Inborn Errors of Immunity Leading to Fungal Infections. Clinical Microbiology and Infection, 28, 1435-1440.
https://doi.org/10.1016/j.cmi.2022.06.031
[9] 史冬梅, 刘维达. IL-17相关信号通路分子先天免疫缺陷在慢性黏膜皮肤念珠菌病中的研究及免疫治疗进展[J]. 中华微生物学和免疫学杂志, 2020, 40(1): 74-82.
[10] 卢晓迪, 张蕾, 都琳, 等. 慢性皮肤黏膜念珠菌病的免疫致病机制及新型治疗方法[J]. 世界临床药物, 2023, 44(8): 851-857.
[11] Puel, A. (2020) Human Inborn Errors of Immunity Underlying Superficial or Invasive Candidiasis. Human Genetics, 139, 1011-1022.
https://doi.org/10.1007/s00439-020-02141-7
[12] Pathakumari, B., Liang, G. and Liu, W. (2020) Immune Defence to Invasive Fungal Infections: A Comprehensive Review. Biomedicine & Pharmacotherapy, 130, Article ID: 110550.
https://doi.org/10.1016/j.biopha.2020.110550
[13] Lass-Flörl, C., Kanj, S.S., Govender, N.P., Thompson, G.R., Ostrosky-Zeichner, L. and Govrins, M.A. (2024) Invasive Candidiasis. Nature Reviews Disease Primers, 10, Article No. 20.
https://doi.org/10.1038/s41572-024-00503-3
[14] Fernández-García, O.A. and Cuellar-Rodríguez, J.M. (2021) Immunology of Fungal Infections. Infectious Disease Clinics of North America, 35, 373-388.
https://doi.org/10.1016/j.idc.2021.03.006
[15] Brown, G.D., Denning, D.W., Gow, N.A.R., Levitz, S.M., Netea, M.G. and White, T.C. (2012) Hidden Killers: Human Fungal Infections. Science Translational Medicine, 4, 165rv113.
https://doi.org/10.1126/scitranslmed.3004404
[16] Amitani, R., Murayama, T., Nawada, R., Lee, W., Niimi, A., Suzuki, K., et al. (1995) Aspergillus Culture Filtrates and Sputum Sols from Patients with Pulmonary Aspergillosis Cause Damage to Human Respiratory Ciliated Epithelium in Vitro. European Respiratory Journal, 8, 1681-1687.
https://doi.org/10.1183/09031936.95.08101681
[17] Lionakis, M.S. and Levitz, S.M. (2018) Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annual Review of Immunology, 36, 157-191.
https://doi.org/10.1146/annurev-immunol-042617-053318
[18] Winkelstein, J.A., Marino, M.C., Johnston, R.B., Boyle, J., Curnutte, J., Gallin, J.I., et al. (2000) Chronic Granulomatous Disease: Report on a National Registry of 368 Patients. Medicine, 79, 155-169.
https://doi.org/10.1097/00005792-200005000-00003
[19] Marciano, B.E., Spalding, C., Fitzgerald, A., Mann, D., Brown, T., Osgood, S., et al. (2014) Common Severe Infections in Chronic Granulomatous Disease. Clinical Infectious Diseases, 60, 1176-1183.
https://doi.org/10.1093/cid/ciu1154
[20] Danion, F., Aimanianda, V., Bayry, J., Duréault, A., Wong, S.S.W., Bougnoux, M., et al. (2020) Aspergillus Fumigatus Infection in Humans with Stat3-Deficiency Is Associated with Defective Interferon-Gamma and Th17 Responses. Frontiers in Immunology, 11, Article No. 38.
https://doi.org/10.3389/fimmu.2020.00038
[21] Duréault, A., Tcherakian, C., Poiree, S., Catherinot, E., Danion, F., Jouvion, G., et al. (2019) Spectrum of Pulmonary Aspergillosis in Hyper-Ige Syndrome with Autosomal-Dominant STAT3 Deficiency. The Journal of Allergy and Clinical Immunology: In Practice, 7, 1986-1995.e3.
https://doi.org/10.1016/j.jaip.2019.02.041
[22] Vinh, D.C., Sugui, J.A., Hsu, A.P., Freeman, A.F. and Holland, S.M. (2010) Invasive Fungal Disease in Autosomal-Dominant Hyper-Ige Syndrome. Journal of Allergy and Clinical Immunology, 125, 1389-1390.
https://doi.org/10.1016/j.jaci.2010.01.047
[23] Rieber, N., Gazendam, R.P., Freeman, A.F., Hsu, A.P., Collar, A.L., Sugui, J.A., et al. (2016) Extrapulmonary Aspergillus Infection in Patients with CARD9 Deficiency. JCI Insight, 1, e89890.
https://doi.org/10.1172/jci.insight.89890
[24] Oleaga-Quintas, C., de Oliveira-Júnior, E.B., Rosain, J., Rapaport, F., Deswarte, C., Guérin, A., et al. (2021) Inherited GATA2 Deficiency Is Dominant by Haploinsufficiency and Displays Incomplete Clinical Penetrance. Journal of Clinical Immunology, 41, 639-657.
https://doi.org/10.1007/s10875-020-00930-3
[25] Casadevall, A. (2022) Immunity to Invasive Fungal Diseases. Annual Review of Immunology, 40, 121-141.
https://doi.org/10.1146/annurev-immunol-101220-034306
[26] Browne, S.K., Burbelo, P.D., Chetchotisakd, P., Suputtamongkol, Y., Kiertiburanakul, S., Shaw, P.A., et al. (2012) New England Journal of Medicine, 367, 725-734.
https://doi.org/10.1056/nejmoa1111160
[27] Kannambath, S., Jarvis, J.N., Wake, R.M., Longley, N., Loyse, A., Matzaraki, V., et al. (2020) Genome-Wide Association Study Identifies Novel Colony Stimulating Factor 1 Locus Conferring Susceptibility to Cryptococcosis in Human Immunodeficiency Virus-Infected South Africans. Open Forum Infectious Diseases, 7, ofaa489.
https://doi.org/10.1093/ofid/ofaa489
[28] Vinh, D.C., Patel, S.Y., Uzel, G., Anderson, V.L., Freeman, A.F., Olivier, K.N., et al. (2010) Autosomal Dominant and Sporadic Monocytopenia with Susceptibility to Mycobacteria, Fungi, Papillomaviruses, and Myelodysplasia. Blood, 115, 1519-1529.
https://doi.org/10.1182/blood-2009-03-208629
[29] Jenks, J.D., Cornely, O.A., Chen, S.C., Thompson, G.R. and Hoenigl, M. (2020) Breakthrough Invasive Fungal Infections: Who Is at Risk? Mycoses, 63, 1021-1032.
https://doi.org/10.1111/myc.13148
[30] Armstrong-James, D., Brown, G.D., Netea, M.G., Zelante, T., Gresnigt, M.S., van de Veerdonk, F.L., et al. (2017) Immunotherapeutic Approaches to Treatment of Fungal Diseases. The Lancet Infectious Diseases, 17, e393-e402.
https://doi.org/10.1016/s1473-3099(17)30442-5
[31] Kullberg, B.J., Lashof, A.M.L.O. and Netea, M.G. (2004) Design of Efficacy Trials of Cytokines in Combination with Antifungal Drugs. Clinical Infectious Diseases, 39, S218-S223.
https://doi.org/10.1086/421960
[32] Wan, L., Zhang, Y., Lai, Y., Jiang, M., Song, Y., Zhou, J., et al. (2015) Effect of Granulocyte-Macrophage Colony-Stimulating Factor on Prevention and Treatment of Invasive Fungal Disease in Recipients of Allogeneic Stem-Cell Transplantation: A Prospective Multicenter Randomized Phase IV Trial. Journal of Clinical Oncology, 33, 3999-4006.
https://doi.org/10.1200/jco.2014.60.5121
[33] Nemunaitis, J., Shannon-Dorcy, K., Appelbaum, F., Meyers, J., Owens, A., Day, R., et al. (1993) Long-Term Follow-Up of Patients with Invasive Fungal Disease Who Received Adjunctive Therapy with Recombinant Human Macrophage Colony-Stimulating Factor. Blood, 82, 1422-1427.
https://doi.org/10.1182/blood.v82.5.1422.1422
[34] Groll, A., Renz, S., Gerein, V., Schwabe, D., Katschan, G., Schneider, M., et al. (1992) Fatal Haemoptysis Associated with Invasive Pulmonary Aspergillosis Treated with High‐Dose Amphotericin B and Granulocyte‐Macrophage Colony‐stimulating Factor (GM-CSF). Mycoses, 35, 67-75.
https://doi.org/10.1111/j.1439-0507.1992.tb00822.x
[35] Group, I.C.G.D.C.S. (1991) A Controlled Trial of Interferon Gamma to Prevent Infection in Chronic Granulomatous Disease. New England Journal of Medicine, 324, 509-516.
https://doi.org/10.1056/nejm199102213240801
[36] Jarvis, J.N., Meintjes, G., Rebe, K., Williams, G.N., Bicanic, T., Williams, A., et al. (2012) Adjunctive Interferon-γ Immunotherapy for the Treatment of HIV-Associated Cryptococcal Meningitis: A Randomized Controlled Trial. AIDS, 26, 1105-1113.
https://doi.org/10.1097/qad.0b013e3283536a93
[37] Bandera, A., Trabattoni, D., Ferrario, G., Cesari, M., Franzetti, F., Clerici, M., et al. (2008) Interferon-γ and Granulocyte-Macrophage Colony Stimulating Factor Therapy in Three Patients with Pulmonary Aspergillosis. Infection, 36, 368-373.
https://doi.org/10.1007/s15010-008-7378-7
[38] Perruccio, K., Tosti, A., Burchielli, E., Topini, F., Ruggeri, L., Carotti, A., et al. (2005) Transferring Functional Immune Responses to Pathogens after Haploidentical Hematopoietic Transplantation. Blood, 106, 4397-4406.
https://doi.org/10.1182/blood-2005-05-1775
[39] Seif, M., Kakoschke, T.K., Ebel, F., Bellet, M.M., Trinks, N., Renga, G., et al. (2022) CAR T Cells Targeting Aspergillus fumigatus Are Effective at Treating Invasive Pulmonary Aspergillosis in Preclinical Models. Science Translational Medicine, 14, eabh1209.
https://doi.org/10.1126/scitranslmed.abh1209
[40] Nikolajeva, O., Mijovic, A., Hess, D., Tatam, E., Amrolia, P., Chiesa, R., et al. (2015) Single-Donor Granulocyte Transfusions for Improving the Outcome of High-Risk Pediatric Patients with Known Bacterial and Fungal Infections Undergoing Stem Cell Transplantation: A 10-Year Single-Center Experience. Bone Marrow Transplantation, 50, 846-849.
https://doi.org/10.1038/bmt.2015.53
[41] Cowen, L.E. and Lindquist, S. (2005) Hsp90 Potentiates the Rapid Evolution of New Traits: Drug Resistance in Diverse Fungi. Science, 309, 2185-2189.
https://doi.org/10.1126/science.1118370
[42] Watkins, T.N., Gebremariam, T., Swidergall, M., Shetty, A.C., Graf, K.T., Alqarihi, A., et al. (2018) Inhibition of EGFR Signaling Protects from Mucormycosis. mBio, 9, e01384-18.
https://doi.org/10.1128/mbio.01384-18
[43] Tsai, M., Thauland, T.J., Huang, A.Y., Bun, C., Fitzwater, S., Krogstad, P., et al. (2020) Disseminated Coccidioidomycosis Treated with Interferon-Γ and Dupilumab. New England Journal of Medicine, 382, 2337-2343.
https://doi.org/10.1056/nejmoa2000024
[44] Weinacht, K.G., Charbonnier, L., Alroqi, F., Plant, A., Qiao, Q., Wu, H., et al. (2017) Ruxolitinib Reverses Dysregulated T Helper Cell Responses and Controls Autoimmunity Caused by a Novel Signal Transducer and Activator of Transcription 1 (STAT1) Gain-of-Function Mutation. Journal of Allergy and Clinical Immunology, 139, 1629-1640.e2.
https://doi.org/10.1016/j.jaci.2016.11.022
[45] Higgins, E., Al Shehri, T., McAleer, M.A., Conlon, N., Feighery, C., Lilic, D., et al. (2015) Use of Ruxolitinib to Successfully Treat Chronic Mucocutaneous Candidiasis Caused by Gain-of-Function Signal Transducer and Activator of Transcription 1 (STAT1) Mutation. Journal of Allergy and Clinical Immunology, 135, 551-553.e3.
https://doi.org/10.1016/j.jaci.2014.12.1867
[46] Meesilpavikkai, K., Dik, W.A., Schrijver, B., Nagtzaam, N.M.A., Posthumus-van Sluijs, S.J., van Hagen, P.M., et al. (2018) Baricitinib Treatment in a Patient with a Gain-of-Function Mutation in Signal Transducer and Activator of Transcription 1 (STAT1). Journal of Allergy and Clinical Immunology, 142, 328-330.e2.
https://doi.org/10.1016/j.jaci.2018.02.045
[47] Toubiana, J., Okada, S., Hiller, J., Oleastro, M., Lagos Gomez, M., Aldave Becerra, J.C., et al. (2016) Heterozygous STAT1 Gain-of-Function Mutations Underlie an Unexpectedly Broad Clinical Phenotype. Blood, 127, 3154-3164.
https://doi.org/10.1182/blood-2015-11-679902
[48] De Bernardis, F., Santoni, G., Boccanera, M., Lucciarini, R., Arancia, S., Sandini, S., et al. (2010) Protection against Rat Vaginal Candidiasis by Adoptive Transfer of Vaginal B Lymphocytes. FEMS Yeast Research, 10, 432-440.
https://doi.org/10.1111/j.1567-1364.2010.00620.x
[49] Schmidt, C.S., White, C.J., Ibrahim, A.S., Filler, S.G., Fu, Y., Yeaman, M.R., et al. (2012) NDV-3, a Recombinant Alum-Adjuvanted Vaccine for Candida and Staphylococcus Aureus, Is Safe and Immunogenic in Healthy Adults. Vaccine, 30, 7594-7600.
https://doi.org/10.1016/j.vaccine.2012.10.038
[50] Pappagianis, D. (1993) Evaluation of the Protective Efficacy of the Killed Coccidioides immitis Spherule Vaccine in Humans. American Review of Respiratory Disease, 148, 656-660.
https://doi.org/10.1164/ajrccm/148.3.656
[51] De Bernardis, F., Graziani, S., Tirelli, F. and Antonopoulou, S. (2018) Candida Vaginitis: Virulence, Host Response and Vaccine Prospects. Medical Mycology, 56, S26-S31.
https://doi.org/10.1093/mmy/myx139
[52] Edwards, J.E., Schwartz, M.M., Schmidt, C.S., Sobel, J.D., Nyirjesy, P., Schodel, F., et al. (2018) A Fungal Immunotherapeutic Vaccine (NDV-3A) for Treatment of Recurrent Vulvovaginal Candidiasis—A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial. Clinical Infectious Diseases, 66, 1928-1936.
https://doi.org/10.1093/cid/ciy185
[53] Shubitz, L.F., Yu, J., Hung, C., Kirkland, T.N., Peng, T., Perrill, R., et al. (2006) Improved Protection of Mice against Lethal Respiratory Infection with Coccidioides posadasii Using Two Recombinant Antigens Expressed as a Single Protein. Vaccine, 24, 5904-5911.
https://doi.org/10.1016/j.vaccine.2006.04.002

Baidu
map