[1] |
Malireddi, R.K.S., Sharma, B.R. and Kanneganti, T. (2024) Innate Immunity in Protection and Pathogenesis during Coronavirus Infections and Covid-19. Annual Review of Immunology, 42, 615-645. https://doi.org/10.1146/annurev-immunol-083122-043545 |
[2] |
Kanneganti, T. (2020) Intracellular Innate Immune Receptors: Life Inside the Cell. Immunological Reviews, 297, 5-12. https://doi.org/10.1111/imr.12912 |
[3] |
Hitomi, J., Christofferson, D.E., Ng, A., Yao, J., Degterev, A., Xavier, R.J., et al. (2008) Identification of a Molecular Signaling Network That Regulates a Cellular Necrotic Cell Death Pathway. Cell, 135, 1311-1323. https://doi.org/10.1016/j.cell.2008.10.044 |
[4] |
Zychlinsky, A., Prevost, M.C. and Sansonetti, P.J. (1992) Shigella Flexneri Induces Apoptosis in Infected Macrophages. Nature, 358, 167-169. https://doi.org/10.1038/358167a0 |
[5] |
Kerr, J.F.R., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: A Basic Biological Phenomenon with Wideranging Implications in Tissue Kinetics. British Journal of Cancer, 26, 239-257. https://doi.org/10.1038/bjc.1972.33 |
[6] |
Anding, A.L. and Baehrecke, E.H. (2015) Autophagy in Cell Life and Cell Death. In: Current Topics in Developmental Biology, Elsevier, 67-91. https://doi.org/10.1016/bs.ctdb.2015.07.012 |
[7] |
Sundaram, B., Tweedell, R.E., Prasanth Kumar, S. and Kanneganti, T. (2024) The NLR Family of Innate Immune and Cell Death Sensors. Immunity, 57, 674-699. https://doi.org/10.1016/j.immuni.2024.03.012 |
[8] |
Christgen, S., Tweedell, R.E. and Kanneganti, T. (2022) Programming Inflammatory Cell Death for Therapy. Pharmacology & Therapeutics, 232, Article ID: 108010. https://doi.org/10.1016/j.pharmthera.2021.108010 |
[9] |
Sundaram, B., Pandian, N., Mall, R., Wang, Y., Sarkar, R., Kim, H.J., et al. (2023) NLRP12-PANoptosome Activates PANoptosis and Pathology in Response to Heme and PAMPs. Cell, 186, 2783-2801.e20. https://doi.org/10.1016/j.cell.2023.05.005 |
[10] |
Lee, S., Karki, R., Wang, Y., Nguyen, L.N., Kalathur, R.C. and Kanneganti, T. (2021) AIM2 Forms a Complex with Pyrin and ZBP1 to Drive PANoptosis and Host Defence. Nature, 597, 415-419. https://doi.org/10.1038/s41586-021-03875-8 |
[11] |
Karki, R., Sharma, B.R., Tuladhar, S., Williams, E.P., Zalduondo, L., Samir, P., et al. (2021) Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell, 184, 149-168.e17. https://doi.org/10.1016/j.cell.2020.11.025 |
[12] |
Dai, W., Zheng, P., Wu, J., Chen, S., Deng, M., Tong, X., et al. (2024) Integrated Analysis of Single-Cell RNA-Seq and Chipset Data Unravels PANoptosis-Related Genes in Sepsis. Frontiers in Immunology, 14, Article ID: 1247131. https://doi.org/10.3389/fimmu.2023.1247131 |
[13] |
Lin, J., Hu, P., Wang, Y., Tan, Y., Yu, K., Liao, K., et al. (2022) Phosphorylated NFS1 Weakens Oxaliplatin-Based Chemosensitivity of Colorectal Cancer by Preventing PANoptosis. Signal Transduction and Targeted Therapy, 7, Article No. 54. https://doi.org/10.1038/s41392-022-00889-0 |
[14] |
Sundaram, B., Pandian, N., Kim, H.J., Abdelaal, H.M., Mall, R., Indari, O., et al. (2024) NLRC5 Senses NAD+ Depletion, Forming a Panoptosome and Driving PANoptosis and Inflammation. Cell, 187, 4061-4077.e17. https://doi.org/10.1016/j.cell.2024.05.034 |
[15] |
Liu, H., Liu, Y., Fan, W. and Fan, B. (2022) Fusobacterium Nucleatum Triggers Proinflammatory Cell Death via Z-DNA Binding Protein 1 in Apical Periodontitis. Cell Communication and Signaling, 20, Article No. 196. https://doi.org/10.1186/s12964-022-01005-z |
[16] |
Rajesh, Y. and Kanneganti, T. (2022) Innate Immune Cell Death in Neuroinflammation and Alzheimer’s Disease. Cells, 11, Article No. 1885. https://doi.org/10.3390/cells11121885 |
[17] |
Liu, X., Tang, A., Chen, J., Gao, N., Zhang, G. and Xiao, C. (2023) RIPK1 in the Inflammatory Response and Sepsis: Recent Advances, Drug Discovery and Beyond. Frontiers in Immunology, 14, Article ID: 1114103. https://doi.org/10.3389/fimmu.2023.1114103 |
[18] |
He, Y., Deng, J., Zhou, C., Jiang, S., Zhang, F., Tao, X., et al. (2023) Ursodeoxycholic Acid Alleviates Sepsis-Induced Lung Injury by Blocking PANoptosis via STING Pathway. International Immunopharmacology, 125, Article ID: 111161. https://doi.org/10.1016/j.intimp.2023.111161 |
[19] |
Shi, F., Li, Q., Xu, R., Yuan, L., Chen, Y., Shi, Z., et al. (2023) Blocking Reverse Electron Transfer-Mediated Mitochondrial DNA Oxidation Rescues Cells from PANoptosis. Acta Pharmacologica Sinica, 45, 594-608. https://doi.org/10.1038/s41401-023-01182-8 |
[20] |
D’Arcy, M.S. (2019) Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biology International, 43, 582-592. https://doi.org/10.1002/cbin.11137 |
[21] |
Ai, Y., Meng, Y., Yan, B., Zhou, Q. and Wang, X. (2024) The Biochemical Pathways of Apoptotic, Necroptotic, Pyroptotic, and Ferroptotic Cell Death. Molecular Cell, 84, 170-179. https://doi.org/10.1016/j.molcel.2023.11.040 |
[22] |
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287 |
[23] |
Pasparakis, M. and Vandenabeele, P. (2015) Necroptosis and Its Role in Inflammation. Nature, 517, 311-320. https://doi.org/10.1038/nature14191 |
[24] |
Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., et al. (2019) The Role of Necroptosis in Cancer Biology and Therapy. Molecular Cancer, 18, Article No. 100. https://doi.org/10.1186/s12943-019-1029-8 |
[25] |
Frank, D. and Vince, J.E. (2018) Pyroptosis versus Necroptosis: Similarities, Differences, and Crosstalk. Cell Death & Differentiation, 26, 99-114. https://doi.org/10.1038/s41418-018-0212-6 |
[26] |
Bolognese, A.C., Yang, W., Hansen, L.W., Denning, N., Nicastro, J.M., Coppa, G.F., et al. (2018) Inhibition of Necroptosis Attenuates Lung Injury and Improves Survival in Neonatal Sepsis. Surgery, 164, 110-116. https://doi.org/10.1016/j.surg.2018.02.017 |
[27] |
Kitur, K., Wachtel, S., Brown, A., Wickersham, M., Paulino, F., Peñaloza, H.F., et al. (2016) Necroptosis Promotes Staphylococcus aureus Clearance by Inhibiting Excessive Inflammatory Signaling. Cell Reports, 16, 2219-2230. https://doi.org/10.1016/j.celrep.2016.07.039 |
[28] |
Vasudevan, S.O., Behl, B. and Rathinam, V.A. (2023) Pyroptosis-Induced Inflammation and Tissue Damage. Seminars in Immunology, 69, Article ID: 101781. https://doi.org/10.1016/j.smim.2023.101781 |
[29] |
Zheng, X., Chen, W., Gong, F., Chen, Y. and Chen, E. (2021) The Role and Mechanism of Pyroptosis and Potential Therapeutic Targets in Sepsis: A Review. Frontiers in Immunology, 12, Article ID: 711939. https://doi.org/10.3389/fimmu.2021.711939 |
[30] |
Denton, D. and Kumar, S. (2018) Autophagy-Dependent Cell Death. Cell Death & Differentiation, 26, 605-616. https://doi.org/10.1038/s41418-018-0252-y |
[31] |
Yan, X., Zhou, R. and Ma, Z. (2019) Autophagy-Cell Survival and Death. In: Advances in Experimental Medicine and Biology, Springer, 667-696. https://doi.org/10.1007/978-981-15-0602-4_29 |
[32] |
Sun, Y., Yao, X., Zhang, Q., Zhu, M., Liu, Z., Ci, B., et al. (2018) Beclin-1-Dependent Autophagy Protects the Heart during Sepsis. Circulation, 138, 2247-2262. https://doi.org/10.1161/circulationaha.117.032821 |
[33] |
Kim, Y.S., Jeong, Y.S., Bae, G.H., Kang, J.H., Lee, M., Zabel, B.A., et al. (2024) CD200R(High) Neutrophils with Dysfunctional Autophagy Establish Systemic Immunosuppression by Increasing Regulatory T Cells. Cellular & Molecular Immunology, 21, 349-361. https://doi.org/10.1038/s41423-024-01136-y |
[34] |
Dong, Y., Wu, Y., Zhao, G. L., et al. (2019) Inhibition of Autophagy by 3-MA Promotes Hypoxia-Induced Apoptosis in Human Colorectal Cancer Cells. European Review for Medical and Pharmacological Sciences, 23, 1047-1054. http://10.26355/eurrev_201902_16992 |
[35] |
Ferreira, P.M.P., Sousa, R.W.R.d., Ferreira, J.R.d.O., Militão, G.C.G. and Bezerra, D.P. (2021) Chloroquine and Hydroxychloroquine in Antitumor Therapies Based on Autophagy-Related Mechanisms. Pharmacological Research, 168, Article ID: 105582. https://doi.org/10.1016/j.phrs.2021.105582 |
[36] |
Sun, L., Xiong, H., Chen, L., Dai, X., Yan, X., Wu, Y., et al. (2022) Deacetylation of ATG4B Promotes Autophagy Initiation under Starvation. Science Advances, 8, eabo0412. https://doi.org/10.1126/sciadv.abo0412 |
[37] |
Ocansey, D., Yuan, J., Wei, Z., Mao, F. and Zhang, Z. (2023) Role of Ferroptosis in the Pathogenesis and as a Therapeutic Target of Inflammatory Bowel Disease (Review). International Journal of Molecular Medicine, 51, Article No. 53. https://doi.org/10.3892/ijmm.2023.5256 |
[38] |
Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88. https://doi.org/10.1038/s41419-020-2298-2 |
[39] |
Zhou, B., Liu, J., Kang, R., Klionsky, D.J., Kroemer, G. and Tang, D. (2020) Ferroptosis Is a Type of Autophagy-Dependent Cell Death. Seminars in Cancer Biology, 66, 89-100. https://doi.org/10.1016/j.semcancer.2019.03.002 |
[40] |
Chen, F., Kang, R., Tang, D. and Liu, J. (2024) Ferroptosis: Principles and Significance in Health and Disease. Journal of Hematology & Oncology, 17, Article No. 41. https://doi.org/10.1186/s13045-024-01564-3 |
[41] |
Shen, K., Wang, X., Wang, Y., Jia, Y., Zhang, Y., Wang, K., et al. (2023) miR-125b-5p in Adipose Derived Stem Cells Exosome Alleviates Pulmonary Microvascular Endothelial Cells Ferroptosis via Keap1/Nrf2/GPX4 in Sepsis Lung Injury. Redox Biology, 62, Article ID: 102655. https://doi.org/10.1016/j.redox.2023.102655 |
[42] |
Zhang, H., Wu, D., Wang, Y., Guo, K., Spencer, C.B., Ortoga, L., et al. (2023) METTL3‐Mediated N6‐Methyladenosine Exacerbates Ferroptosis via m6A-IGF2BP2‐Dependent Mitochondrial Metabolic Reprogramming in Sepsis‐Induced Acute Lung Injury. Clinical and Translational Medicine, 13, e1389. https://doi.org/10.1002/ctm2.1389 |
[43] |
Jiang, C., Shi, Q., Yang, J., Ren, H., Zhang, L., Chen, S., et al. (2024) Ceria Nanozyme Coordination with Curcumin for Treatment of Sepsis-Induced Cardiac Injury by Inhibiting Ferroptosis and Inflammation. Journal of Advanced Research, 63, 159-170. https://doi.org/10.1016/j.jare.2023.10.011 |
[44] |
Liu, C., Zou, Q., Tang, H., Liu, J., Zhang, S., Fan, C., et al. (2023) Melanin Nanoparticles Alleviate Sepsis-Induced Myocardial Injury by Suppressing Ferroptosis and Inflammation. Bioactive Materials, 24, 313-321. https://doi.org/10.1016/j.bioactmat.2022.12.026 |
[45] |
Malireddi, R.K.S., Kesavardhana, S. and Kanneganti, T. (2019) ZBP1 and TAK1: Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 9, Article No. 406. https://doi.org/10.3389/fcimb.2019.00406 |
[46] |
Christgen, S., Zheng, M., Kesavardhana, S., Karki, R., Malireddi, R.K.S., Banoth, B., et al. (2020) Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 10, Article No. 237. https://doi.org/10.3389/fcimb.2020.00237 |
[47] |
Man, S.M. and Kanneganti, T. (2024) Innate Immune Sensing of Cell Death in Disease and Therapeutics. Nature Cell Biology, 26, 1420-1433. https://doi.org/10.1038/s41556-024-01491-y |
[48] |
Gao, L., Shay, C. and Teng, Y. (2024) Cell Death Shapes Cancer Immunity: Spotlighting PANoptosis. Journal of Experimental & Clinical Cancer Research, 43, Article No. 168. https://doi.org/10.1186/s13046-024-03089-6 |
[49] |
Banoth, B., Tuladhar, S., Karki, R., Sharma, B.R., Briard, B., Kesavardhana, S., et al. (2020) ZBP1 Promotes Fungi-Induced Inflammasome Activation and Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Journal of Biological Chemistry, 295, 18276-18283. https://doi.org/10.1074/jbc.ra120.015924 |
[50] |
Oh, S. and Lee, S. (2023) Recent Advances in ZBP1-Derived PANoptosis against Viral Infections. Frontiers in Immunology, 14, Article ID: 1148727. https://doi.org/10.3389/fimmu.2023.1148727 |
[51] |
Karki, R., Sharma, B.R., Lee, E., Banoth, B., Malireddi, R.K.S., Samir, P., et al. (2020) Interferon Regulatory Factor 1 Regulates PANoptosis to Prevent Colorectal Cancer. JCI Insight, 5, e136720. https://doi.org/10.1172/jci.insight.136720 |
[52] |
Karki, R., Sundaram, B., Sharma, B.R., Lee, S., Malireddi, R.K.S., Nguyen, L.N., et al. (2021) ADAR1 Restricts ZBP1-Mediated Immune Response and PANoptosis to Promote Tumorigenesis. Cell Reports, 37, Article ID: 109858. https://doi.org/10.1016/j.celrep.2021.109858 |
[53] |
Malireddi, R.K.S., Karki, R., Sundaram, B., Kancharana, B., Lee, S., Samir, P., et al. (2021) Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth. ImmunoHorizons, 5, 568-580. https://doi.org/10.4049/immunohorizons.2100059 |
[54] |
Place, D.E., Lee, S. and Kanneganti, T. (2021) PANoptosis in Microbial Infection. Current Opinion in Microbiology, 59, 42-49. https://doi.org/10.1016/j.mib.2020.07.012 |
[55] |
Zeng, F., Zhang, Y., Wang, Z., Zhang, H., Meng, X., Wu, Y., et al. (2024) Neutrophil Extracellular Traps Promote Acetaminophen-Induced Acute Liver Injury in Mice via AIM2. Acta Pharmacologica Sinica, 45, 1660-1672. https://doi.org/10.1038/s41401-024-01239-2 |
[56] |
Wang, Y. and Kanneganti, T. (2021) From Pyroptosis, Apoptosis and Necroptosis to PANoptosis: A Mechanistic Compendium of Programmed Cell Death Pathways. Computational and Structural Biotechnology Journal, 19, 4641-4657. https://doi.org/10.1016/j.csbj.2021.07.038 |
[57] |
Xu, J., Zhu, M., Luo, P. and Gong, Y. (2024) Machine Learning Screening and Validation of PANoptosis-Related Gene Signatures in Sepsis. Journal of Inflammation Research, 17, 4765-4780. https://doi.org/10.2147/jir.s461809 |
[58] |
Yang, Z., Kao, X., Huang, N., Yuan, K., Chen, J. and He, M. (2024) Identification and Analysis of PANoptosis-Related Genes in Sepsis-Induced Lung Injury by Bioinformatics and Experimental Verification. Journal of Inflammation Research, 17, 1941-1956. https://doi.org/10.2147/jir.s452608 |
[59] |
Liu, X., Li, Y., Zhang, W., Gao, N., Chen, J., Xiao, C., et al. (2024) Inhibition of cIAP1/2 Reduces RIPK1 Phosphorylation in Pulmonary Endothelial Cells and Alleviate Sepsis-Induced Lung Injury and Inflammatory Response. Immunologic Research, 72, 841-850. https://doi.org/10.1007/s12026-024-09491-8 |
[60] |
Zhou, R., Ying, J., Qiu, X., Yu, L., Yue, Y., Liu, Q., et al. (2022) A New Cell Death Program Regulated by Toll-Like Receptor 9 through P38 Mitogen-Activated Protein Kinase Signaling Pathway in a Neonatal Rat Model with Sepsis Associated Encephalopathy. Chinese Medical Journal, 135, 1474-1485. https://doi.org/10.1097/cm9.0000000000002010 |
[61] |
Schwabe, R.F. and Luedde, T. (2018) Apoptosis and Necroptosis in the Liver: A Matter of Life and Death. Nature Reviews Gastroenterology & Hepatology, 15, 738-752. https://doi.org/10.1038/s41575-018-0065-y |
[62] |
Malireddi, R.K.S., Gurung, P., Kesavardhana, S., Samir, P., Burton, A., Mummareddy, H., et al. (2019) Innate Immune Priming in the Absence of TAK1 Drives RIPK1 Kinase Activity-Independent Pyroptosis, Apoptosis, Necroptosis, and Inflammatory Disease. Journal of Experimental Medicine, 217, e20191644. https://doi.org/10.1084/jem.20191644 |
[63] |
Zhou, X., Yu, X., Wan, C., Li, F., Wang, Y., Zhang, K., et al. (2023) NINJ1 Regulates Platelet Activation and PANoptosis in Septic Disseminated Intravascular Coagulation. International Journal of Molecular Sciences, 24, Article No. 4168. https://doi.org/10.3390/ijms24044168 |
[64] |
Wang, Y., Fu, X., Shang, Z., Qiao, Y., Liu, Y., Zhou, L., et al. (2025) In Vivo and in Vitro Study on the Regulatory Mechanism of XiaoChaiHu Decoction on PANoptosis in Sepsis-Induced Cardiomyopathy. Journal of Ethnopharmacology, 336, Article ID: 118740. https://doi.org/10.1016/j.jep.2024.118740 |
[65] |
Zhou, X., Xin, G., Wan, C., Li, F., Wang, Y., Zhang, K., et al. (2024) Myricetin Reduces Platelet PANoptosis in Sepsis to Delay Disseminated Intravascular Coagulation. Biochemical and Biophysical Research Communications, 724, Article ID: 150140. https://doi.org/10.1016/j.bbrc.2024.150140 |
[66] |
Maiorino, L., Daßler-Plenker, J., Sun, L. and Egeblad, M. (2022) Innate Immunity and Cancer Pathophysiology. Annual Review of Pathology: Mechanisms of Disease, 17, 425-457. https://doi.org/10.1146/annurev-pathmechdis-032221-115501 |
[67] |
Chen, S., Saeed, A.F.U.H., Liu, Q., Jiang, Q., Xu, H., Xiao, G.G., et al. (2023) Macrophages in Immunoregulation and Therapeutics. Signal Transduction and Targeted Therapy, 8, Article No. 207. https://doi.org/10.1038/s41392-023-01452-1 |
[68] |
Vivier, E., Rebuffet, L., Narni-Mancinelli, E., Cornen, S., Igarashi, R.Y. and Fantin, V.R. (2024) Natural Killer Cell Therapies. Nature, 626, 727-736. https://doi.org/10.1038/s41586-023-06945-1 |
[69] |
Azoulay, E., Zuber, J., Bousfiha, A.A., Long, Y., Tan, Y., Luo, S., et al. (2024) Complement System Activation: Bridging Physiology, Pathophysiology, and Therapy. Intensive Care Medicine, 50, 1791-1803. https://doi.org/10.1007/s00134-024-07611-4 |
[70] |
Oh, S., Lee, J., Oh, J., Yu, G., Ryu, H., Kim, D., et al. (2023) Integrated NLRP3, AIM2, NLRC4, Pyrin Inflammasome Activation and Assembly Drive PANoptosis. Cellular & Molecular Immunology, 20, 1513-1526. https://doi.org/10.1038/s41423-023-01107-9 |
[71] |
Zheng, M., Karki, R., Vogel, P. and Kanneganti, T. (2020) Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense. Cell, 181, 674-687.e13. https://doi.org/10.1016/j.cell.2020.03.040 |
[72] |
Yang, D., Wang, X., Sun, Y., Shao, Y. and Shi, X. (2024) Identification and Experimental Validation of Genes Associated with Programmed Cell Death in Dendritic Cells of the Thyroid Tissue in Hashimoto’s Thyroiditis. International Immunopharmacology, 142, Article ID: 113083. https://doi.org/10.1016/j.intimp.2024.113083 |
[73] |
Karki, R., Lee, S., Mall, R., Pandian, N., Wang, Y., Sharma, B.R., et al. (2022) ZBP1-Dependent Inflammatory Cell Death, PANoptosis, and Cytokine Storm Disrupt IFN Therapeutic Efficacy during Coronavirus Infection. Science Immunology, 7, eabo6294. https://doi.org/10.1126/sciimmunol.abo6294 |
[74] |
Fukuda, K., Okamura, K., Riding, R.L., Fan, X., Afshari, K., Haddadi, N., et al. (2021) AIM2 Regulates Anti-Tumor Immunity and Is a Viable Therapeutic Target for Melanoma. Journal of Experimental Medicine, 218, e20200962. https://doi.org/10.1084/jem.20200962 |
[75] |
Varga, Z., Rácz, E., Mázló, A., Korodi, M., Szabó, A., Molnár, T., et al. (2021) Cytotoxic Activity of Human Dendritic Cells Induces RIPK1-Dependent Cell Death. Immunobiology, 226, Article ID: 152032. https://doi.org/10.1016/j.imbio.2020.152032 |
[76] |
Clement, C.C., D’Alessandro, A., Thangaswamy, S., Chalmers, S., Furtado, R., Spada, S., et al. (2021) 3-Hydroxy-L-Kynurenamine Is an Immunomodulatory Biogenic Amine. Nature Communications, 12, Article No. 4447. https://doi.org/10.1038/s41467-021-24785-3 |
[77] |
Xiao, H., Zhao, Q., Yuan, J., Liang, W., Wu, R., Wen, Y., et al. (2023) IFN-γ Promotes PANoptosis in Pasteurella Multocida Toxin-Induced Pneumonia in Mice. Veterinary Microbiology, 285, Article ID: 109848. https://doi.org/10.1016/j.vetmic.2023.109848 |
[78] |
Yang, M., Long, D., Hu, L., Zhao, Z., Li, Q., Guo, Y., et al. (2021) AIM2 Deficiency in B Cells Ameliorates Systemic Lupus Erythematosus by Regulating Blimp-1-Bcl-6 Axis-Mediated B-Cell Differentiation. Signal Transduction and Targeted Therapy, 6, Article No. 341. https://doi.org/10.1038/s41392-021-00725-x |
[79] |
Zheng, Z., Li, K., Yang, Z., Wang, X., Shen, C., Zhang, Y., et al. (2024) Transcriptomic Analysis Reveals Molecular Characterization and Immune Landscape of PANoptosis-Related Genes in Atherosclerosis. Inflammation Research, 73, 961-978. https://doi.org/10.1007/s00011-024-01877-6 |
[80] |
Sun, W., Li, P., Wang, M., Xu, Y., Shen, D., Zhang, X., et al. (2023) Molecular Characterization of PANoptosis-Related Genes with Features of Immune Dysregulation in Systemic Lupus Erythematosus. Clinical Immunology, 253, Article ID: 109660. https://doi.org/10.1016/j.clim.2023.109660 |
[81] |
Wu, L., Jiao, X., Jing, M., Zhang, S., Wang, Y., Li, C., et al. (2024) Discovery of PANoptosis-Related Signatures Correlates with Immune Cell Infiltration in Psoriasis. PLOS ONE, 19, e0310362. https://doi.org/10.1371/journal.pone.0310362 |
[82] |
Chen, H., Xia, Z., Qing, B., Gu, L., Chen, Y., Wang, J., et al. (2024) Molecular Characterization of PANoptosis-Related Genes Associated with Immune Infiltration and Prognosis in Idiopathic Pulmonary Fibrosis. International Immunopharmacology, 143, Article ID: 113572. https://doi.org/10.1016/j.intimp.2024.113572 |
[83] |
Zhuang, L., Sun, Q., Huang, S., Hu, L. and Chen, Q. (2023) A Comprehensive Analysis of PANoptosome to Prognosis and Immunotherapy Response in Pan-Cancer. Scientific Reports, 13, Article No. 3877. https://doi.org/10.1038/s41598-023-30934-z |
[84] |
Shi, X., Gao, X., Liu, W., Tang, X., Liu, J., Pan, D., et al. (2023) Construction of the PANoptosis-Related Gene Model and Characterization of Tumor Microenvironment Infiltration in Hepatocellular Carcinoma. Oncology Research, 31, 569-590. https://doi.org/10.32604/or.2023.028964 |
[85] |
Zhang, Y.Y., Zhao, H.S., Sun, Y.F., et al. (2023) Development and Validation of Biomarkers Related to PANoptosis in Osteoarthritis. European Review for Medical and Pharmacological Sciences, 27, 7444-7458. http://10.26355/eurrev_202308_33396 |
[86] |
Messaoud-Nacer, Y., Culerier, E., Rose, S., Maillet, I., Rouxel, N., Briault, S., et al. (2022) STING Agonist diABZI-Induces PANoptosis and DNA Mediated Acute Respiratory Distress Syndrome (ARDS). Cell Death & Disease, 13, Article No. 269. https://doi.org/10.1038/s41419-022-04664-5 |
[87] |
Wang, Y., Shi, Y., Shao, Y., Lu, X., Zhang, H. and Miao, C. (2024) S100A8/A9hi Neutrophils Induce Mitochondrial Dysfunction and PANoptosis in Endothelial Cells via Mitochondrial Complex I Deficiency during Sepsis. Cell Death & Disease, 15, Article No. 462. https://doi.org/10.1038/s41419-024-06849-6 |
[88] |
Samir, P., Malireddi, R.K.S. and Kanneganti, T. (2020) The PANoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 10, Article No. 238. https://doi.org/10.3389/fcimb.2020.00238 |
[89] |
Zhu, P., Ke, Z., Chen, J., Li, S., Ma, T. and Fan, X. (2023) Advances in Mechanism and Regulation of PANoptosis: Prospects in Disease Treatment. Frontiers in Immunology, 14, Article ID: 1120034. https://doi.org/10.3389/fimmu.2023.1120034 |
[90] |
Chen, X., Li, W., Ren, J., Huang, D., He, W., Song, Y., et al. (2013) Translocation of Mixed Lineage Kinase Domain-Like Protein to Plasma Membrane Leads to Necrotic Cell Death. Cell Research, 24, 105-121. https://doi.org/10.1038/cr.2013.171 |
[91] |
Chen, W., Gullett, J.M., Tweedell, R.E. and Kanneganti, T. (2023) Innate Immune Inflammatory Cell Death: PANoptosis and PANoptosomes in Host Defense and Disease. European Journal of Immunology, 53, e2250235. https://doi.org/10.1002/eji.202250235 |
[92] |
Gong, T., Fu, Y., Wang, Q., Loughran, P.A., Li, Y., Billiar, T.R., et al. (2024) Decoding the Multiple Functions of ZBP1 in the Mechanism of Sepsis-Induced Acute Lung Injury. Communications Biology, 7, Article No. 1361. https://doi.org/10.1038/s42003-024-07072-x |
[93] |
Fritsch, M., Günther, S.D., Schwarzer, R., Albert, M., Schorn, F., Werthenbach, J.P., et al. (2019) Caspase-8 Is the Molecular Switch for Apoptosis, Necroptosis and Pyroptosis. Nature, 575, 683-687. https://doi.org/10.1038/s41586-019-1770-6 |
[94] |
Jiang, M., Qi, L., Li, L., Wu, Y., Song, D. and Li, Y. (2021) Caspase‐8: A Key Protein of Cross‐talk Signal Way in “PANoptosis” in Cancer. International Journal of Cancer, 149, 1408-1420. https://doi.org/10.1002/ijc.33698 |
[95] |
Lorente, L., Martín, M.M., Ortiz-López, R., González-Rivero, A.F., Pérez-Cejas, A., Martín, M., et al. (2022) Blood Caspase-8 Concentrations and Mortality among Septic Patients. Medicina Intensiva, 46, 8-13. https://doi.org/10.1016/j.medin.2020.06.016 |
[96] |
Jiang, J., Li, W., Zhou, L., Liu, D., Wang, Y., An, J., et al. (2023) Platelet ITGA2B Inhibits Caspase-8 and Rip3/Mlkl-Dependent Platelet Death Though PTPN6 during Sepsis. iScience, 26, Article ID: 107414. https://doi.org/10.1016/j.isci.2023.107414 |
[97] |
Zhou, H., Gong, H., Liu, H., Jing, G., Xia, Y., Wang, Y., et al. (2024) Erbin Alleviates Sepsis-Induced Cardiomyopathy by Inhibiting RIPK1-Dependent Necroptosis through Activating PKA/CREB Pathway. Cellular Signalling, 123, Article ID: 111374. https://doi.org/10.1016/j.cellsig.2024.111374 |
[98] |
Ling, Z., Lv, Q., Li, J., Lu, R., Chen, L., Xu, W., et al. (2023) Protective Effect of a Novel RIPK1 Inhibitor, Compound 4-155, in Systemic Inflammatory Response Syndrome and Sepsis. Inflammation, 46, 1796-1809. https://doi.org/10.1007/s10753-023-01842-1 |
[99] |
Chen, H., Li, Y., Wu, J., Li, G., Tao, X., Lai, K., et al. (2020) RIPK3 Collaborates with GSDMD to Drive Tissue Injury in Lethal Polymicrobial Sepsis. Cell Death & Differentiation, 27, 2568-2585. https://doi.org/10.1038/s41418-020-0524-1 |
[100] |
Zheng, M. and Kanneganti, T. D. (2020) Newly Identified Function of Caspase-6 in ZBP1-Mediated Innate Immune Responses, NLRP3 Inflammasome Activation, PANoptosis, and Host Defense. Journal of Cellular Immunology, 2, 341-347. http://10.33696/immunology.2.064 |
[101] |
Bynigeri, R.R., Malireddi, R.K.S., Mall, R., Connelly, J.P., Pruett-Miller, S.M. and Kanneganti, T. (2024) The Protein Phosphatase PP6 Promotes RIPK1-Dependent PANoptosis. BMC Biology, 22, Article No. 122. https://doi.org/10.1186/s12915-024-01901-5 |
[102] |
Liu, L., Heng, J., Deng, D., Zhao, H., Zheng, Z., Liao, L., et al. (2023) Sulconazole Induces PANoptosis by Triggering Oxidative Stress and Inhibiting Glycolysis to Increase Radiosensitivity in Esophageal Cancer. Molecular & Cellular Proteomics, 22, Article ID: 100551. https://doi.org/10.1016/j.mcpro.2023.100551 |
[103] |
Wang, J., Chen, S., Chen, L. and Zhou, D. (2024) Data-Driven Analysis That Integrates Bioinformatics and Machine Learning Uncovers PANoptosis-Related Diagnostic Genes in Early Pediatric Septic Shock. Heliyon, 10, e37853. https://doi.org/10.1016/j.heliyon.2024.e37853 |