[1] |
De Visser, K.E. and Joyce, J.A. (2023) The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth. Cancer Cell, 41, 374-403. https://doi.org/10.1016/j.ccell.2023.02.016 |
[2] |
Pitt, J.M., Marabelle, A., Eggermont, A., Soria, J.-C., Kroemer, G. and Zitvogel, L. (2016) Targeting the Tumor Microenvironment: Removing Obstruction to Anticancer Immune Responses and Immunotherapy. Annals of Oncology, 27, 1482-1492. https://doi.org/10.1093/annonc/mdw168 |
[3] |
Hubert, M., Gobbini, E., Bendriss-Vermare, N., Caux, C. and Valladeau-Guilemond, J. (2019) Human Tumor-Infiltrating Dendritic Cells: From in Situ Visualization to High-Dimensional Analyses. Cancers, 11, Article 1082. https://doi.org/10.3390/cancers11081082 |
[4] |
Wu, R. and Murphy, K.M. (2022) DCs at the Center of Help: Origins and Evolution of the Three-Cell-Type Hypothesis. Journal of Experimental Medicine, 219, e20211519. https://doi.org/10.1084/jem.20211519 |
[5] |
Collin, M. and Bigley, V. (2018) Human dendritic cell subsets: an update. Immunology, 154, 3-20. https://doi.org/10.1111/imm.12888 |
[6] |
Macri, C., Pang, E.S., Patton, T. and O’Keeffe, M. (2018) Dendritic Cell Subsets. Seminars in Cell & Developmental Biology, 84, 11-21. https://doi.org/10.1016/j.semcdb.2017.12.009 |
[7] |
Segura, E. (2022) Human Dendritic Cell Subsets: An Updated View of Their Ontogeny and Functional Specialization. European Journal of Immunology, 52, 1759-1767. https://doi.org/10.1002/eji.202149632 |
[8] |
Geissmann, F., Manz, M.G., Jung, S., Sieweke, M.H., Merad, M. and Ley, K. (2010) Development of Monocytes, Macrophages, and Dendritic Cells. Science, 327, 656-661. https://doi.org/10.1126/science.1178331 |
[9] |
Liu, K., Victora, G.D., Schwickert, T.A., Guermonprez, P., Meredith, M.M., Yao, K., et al. (2009) In Vivo Analysis of Dendritic Cell Development and Homeostasis. Science, 324, 392-397. https://doi.org/10.1126/science.1170540 |
[10] |
Gabrilovich, D. (2004) Mechanisms and Functional Significance of Tumour-Induced Dendritic-Cell Defects. Nature Reviews Immunology, 4, 941-952. https://doi.org/10.1038/nri1498 |
[11] |
Worbs, T., Hammerschmidt, S.I. and Förster, R. (2016) Dendritic Cell Migration in Health and Disease. Nature Reviews Immunology, 17, 30-48. https://doi.org/10.1038/nri.2016.116 |
[12] |
Bertolini, T.B., Biswas, M., Terhorst, C., Daniell, H., Herzog, R.W. and Piñeros, A.R. (2021) Role of Orally Induced Regulatory T Cells in Immunotherapy and Tolerance. Cellular Immunology, 359, Article ID: 104251. https://doi.org/10.1016/j.cellimm.2020.104251 |
[13] |
Del Prete, A., Salvi, V., Soriani, A., Laffranchi, M., Sozio, F., Bosisio, D., et al. (2023) Dendritic Cell Subsets in Cancer Immunity and Tumor Antigen Sensing. Cellular & Molecular Immunology, 20, 432-447. https://doi.org/10.1038/s41423-023-00990-6 |
[14] |
Lanzavecchia, A. and Sallusto, F. (2001) The Instructive Role of Dendritic Cells on T Cell Responses: Lineages, Plasticity and Kinetics. Current Opinion in Immunology, 13, 291-298. https://doi.org/10.1016/s0952-7915(00)00218-1 |
[15] |
Kvedaraite, E. and Ginhoux, F. (2022) Human Dendritic Cells in Cancer. Science Immunology, 7, eabm9409. https://doi.org/10.1126/sciimmunol.abm9409 |
[16] |
Marciscano, A.E. and Anandasabapathy, N. (2021) The Role of Dendritic Cells in Cancer and Anti-Tumor Immunity. Seminars in Immunology, 52, Article ID: 101481. https://doi.org/10.1016/j.smim.2021.101481 |
[17] |
Hubert, M., Gobbini, E., Bendriss-Vermare, N., Caux, C. and Valladeau-Guilemond, J. (2019) Human Tumor-Infiltrating Dendritic Cells: From in Situ Visualization to High-Dimensional Analyses. Cancers, 11, Article 1082. https://doi.org/10.3390/cancers11081082 |
[18] |
Peter, S., Charles-Antoine, D., Jinmiao, C., et al. (2017) Mapping the Human DC Lineage through the Integration of High-Dimensional Techniques. Science, 356, eaag3009. |
[19] |
Everts, B., Tussiwand, R., Dreesen, L., Fairfax, K.C., Huang, S.C., Smith, A.M., et al. (2015) Migratory CD103+ Dendritic Cells Suppress Helminth-Driven Type 2 Immunity through Constitutive Expression of IL-12. Journal of Experimental Medicine, 213, 35-51. https://doi.org/10.1084/jem.20150235 |
[20] |
Subbiah, V., Murthy, R., Hong, D.S., Prins, R.M., Hosing, C., Hendricks, K., et al. (2018) Cytokines Produced by Dendritic Cells Administered Intratumorally Correlate with Clinical Outcome in Patients with Diverse Cancers. Clinical Cancer Research, 24, 3845-3856. https://doi.org/10.1158/1078-0432.ccr-17-2707 |
[21] |
Böttcher, J.P. and Reis e Sousa, C. (2018) The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends in Cancer, 4, 784-792. https://doi.org/10.1016/j.trecan.2018.09.001 |
[22] |
Hubert, M., Gobbini, E., Couillault, C., Manh, T.V., Doffin, A., Berthet, J., et al. (2020) IFN-III Is Selectively Produced by Cdc1 and Predicts Good Clinical Outcome in Breast Cancer. Science Immunology, 5, eaav3942. https://doi.org/10.1126/sciimmunol.aav3942 |
[23] |
Plesca, I., Müller, L., Böttcher, J.P., Medyouf, H., Wehner, R. and Schmitz, M. (2022) Tumor‐Associated Human Dendritic Cell Subsets: Phenotype, Functional Orientation, and Clinical Relevance. European Journal of Immunology, 52, 1750-1758. https://doi.org/10.1002/eji.202149487 |
[24] |
Dutertre, C., Becht, E., Irac, S.E., Khalilnezhad, A., Narang, V., Khalilnezhad, S., et al. (2019) Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity, 51, 573-589.e8. https://doi.org/10.1016/j.immuni.2019.08.008 |
[25] |
Bourdely, P., Anselmi, G., Vaivode, K., Ramos, R.N., Missolo-Koussou, Y., Hidalgo, S., et al. (2020) Transcriptional and Functional Analysis of CD1c+ Human Dendritic Cells Identifies a CD163+ Subset Priming CD8+CD103+ T Cells. Immunity, 53, 335-352.e8. https://doi.org/10.1016/j.immuni.2020.06.002 |
[26] |
Rautela, J., Baschuk, N., Slaney, C.Y., Jayatilleke, K.M., Xiao, K., Bidwell, B.N., et al. (2015) Loss of Host Type-I IFN Signaling Accelerates Metastasis and Impairs NK-Cell Antitumor Function in Multiple Models of Breast Cancer. Cancer Immunology Research, 3, 1207-1217. https://doi.org/10.1158/2326-6066.cir-15-0065 |
[27] |
Zilionis, R., Engblom, C., Pfirschke, C., Savova, V., Zemmour, D., Saatcioglu, H.D., et al. (2019) Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity, 50, 1317-1334.e10. https://doi.org/10.1016/j.immuni.2019.03.009 |
[28] |
Gerhard, G.M., Bill, R., Messemaker, M., Klein, A.M. and Pittet, M.J. (2020) Tumor-Infiltrating Dendritic Cell States Are Conserved across Solid Human Cancers. Journal of Experimental Medicine, 218, e20200264. https://doi.org/10.1084/jem.20200264 |
[29] |
Cytlak, U., Resteu, A., Pagan, S., Green, K., Milne, P., Maisuria, S., et al. (2020) Differential IRF8 Transcription Factor Requirement Defines Two Pathways of Dendritic Cell Development in Humans. Immunity, 53, 353-370.e8. https://doi.org/10.1016/j.immuni.2020.07.003 |
[30] |
Zhang, Q., He, Y., Luo, N., Patel, S.J., Han, Y., Gao, R., et al. (2019) Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell, 179, 829-845.e20. https://doi.org/10.1016/j.cell.2019.10.003 |
[31] |
Cheng, S., Li, Z., Gao, R., Xing, B., Gao, Y., Yang, Y., et al. (2021) A Pan-Cancer Single-Cell Transcriptional Atlas of Tumor Infiltrating Myeloid Cells. Cell, 184, 792-809.e23. https://doi.org/10.1016/j.cell.2021.01.010 |
[32] |
Zhang, Q., He, Y., Luo, N., Patel, S.J., Han, Y., Gao, R., et al. (2019) Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell, 179, 829-845.e20. https://doi.org/10.1016/j.cell.2019.10.003 |
[33] |
Rodrigues, P.F., Trsan, T., Cvijetic, G., Khantakova, D., Panda, S.K., Liu, Z., et al. (2024) Progenitors of Distinct Lineages Shape the Diversity of Mature Type 2 Conventional Dendritic Cells. Immunity, 57, 1567-1585.e5. https://doi.org/10.1016/j.immuni.2024.05.007 |
[34] |
Musumeci, A., Lutz, K., Winheim, E. and Krug, A.B. (2019) What Makes a pDC: Recent Advances in Understanding Plasmacytoid DC Development and Heterogeneity. Frontiers in Immunology, 10, Article 1222. https://doi.org/10.3389/fimmu.2019.01222 |
[35] |
Dress, R.J., Dutertre, C., Giladi, A., Schlitzer, A., Low, I., Shadan, N.B., et al. (2019) Plasmacytoid Dendritic Cells Develop from Ly6D+ Lymphoid Progenitors Distinct from the Myeloid Lineage. Nature Immunology, 20, 852-864. https://doi.org/10.1038/s41590-019-0420-3 |
[36] |
Fuertes, M.B., Kacha, A.K., Kline, J., Woo, S., Kranz, D.M., Murphy, K.M., et al. (2011) Host Type I IFN Signals Are Required for Antitumor CD8+ T Cell Responses through CD8α+ Dendritic Cells. Journal of Experimental Medicine, 208, 2005-2016. https://doi.org/10.1084/jem.20101159 |
[37] |
Minohara, K., Imai, M., Matoba, T., Wing, J.B., Shime, H., Odanaka, M., et al. (2023) Mature Dendritic Cells Enriched in Regulatory Molecules May Control Regulatory T Cells and the Prognosis of Head and Neck Cancer. Cancer Science, 114, 1256-1269. https://doi.org/10.1111/cas.15698 |
[38] |
Shen, H., Yang, E.S., Conry, M., Fiveash, J., Contreras, C., Bonner, J.A., et al. (2019) Predictive Biomarkers for Immune Checkpoint Blockade and Opportunities for Combination Therapies. Genes & Diseases, 6, 232-246. https://doi.org/10.1016/j.gendis.2019.06.006 |
[39] |
Dixon, K.O., Tabaka, M., Schramm, M.A., Xiao, S., Tang, R., Dionne, D., et al. (2021) TIM-3 Restrains Anti-Tumour Immunity by Regulating Inflammasome Activation. Nature, 595, 101-106. https://doi.org/10.1038/s41586-021-03626-9 |
[40] |
Chevolet, I., Speeckaert, R., Schreuer, M., Neyns, B., Krysko, O., Bachert, C., et al. (2015) Clinical Significance of Plasmacytoid Dendritic Cells and Myeloid-Derived Suppressor Cells in Melanoma. Journal of Translational Medicine, 13, Article No. 9. https://doi.org/10.1186/s12967-014-0376-x |
[41] |
Mazzoccoli, L. and Liu, B. (2024) Dendritic Cells in Shaping Anti-Tumor T Cell Response. Cancers, 16, Article 2211. https://doi.org/10.3390/cancers16122211 |
[42] |
Oshi, M., Newman, S., Tokumaru, Y., Yan, L., Matsuyama, R., Kalinski, P., et al. (2020) Plasmacytoid Dendritic Cell (pDC) Infiltration Correlate with Tumor Infiltrating Lymphocytes, Cancer Immunity, and Better Survival in Triple Negative Breast Cancer (TNBC) More Strongly than Conventional Dendritic Cell (cDC). Cancers, 12, Article 3342. https://doi.org/10.3390/cancers12113342 |
[43] |
Laheurte, C., Seffar, E., Gravelin, E., Lecuelle, J., Renaudin, A., Boullerot, L., et al. (2022) Interplay between Plasmacytoid Dendritic Cells and Tumor-Specific T Cells in Peripheral Blood Influences Long-Term Survival in Non-Small Cell Lung Carcinoma. Cancer Immunology, Immunotherapy, 72, 579-589. https://doi.org/10.1007/s00262-022-03271-9 |
[44] |
Min, J., Yang, D., Kim, M., Haam, K., Yoo, A., Choi, J., et al. (2018) Inflammation Induces Two Types of Inflammatory Dendritic Cells in Inflamed Lymph Nodes. Experimental & Molecular Medicine, 50, e458-e458. https://doi.org/10.1038/emm.2017.292 |
[45] |
Ma, Y., Mattarollo, S.R., Adjemian, S., Yang, H., Aymeric, L., Hannani, D., et al. (2014) CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors Upon Chemotherapy. Cancer Research, 74, 436-445. https://doi.org/10.1158/0008-5472.can-13-1265 |
[46] |
Laoui, D., Keirsse, J., Morias, Y., Van Overmeire, E., Geeraerts, X., Elkrim, Y., et al. (2016) The Tumour Microenvironment Harbours Ontogenically Distinct Dendritic Cell Populations with Opposing Effects on Tumour Immunity. Nature Communications, 7, Article No. 13720. https://doi.org/10.1038/ncomms13720 |
[47] |
Ye, Y., Gaugler, B., Mohty, M. and Malard, F. (2020) Plasmacytoid Dendritic Cell Biology and Its Role in Immune‐mediated Diseases. Clinical & Translational Immunology, 9, e1139. https://doi.org/10.1002/cti2.1139 |
[48] |
Maier, B., Leader, A.M., Chen, S.T., Tung, N., Chang, C., LeBerichel, J., et al. (2020) Author Correction: A Conserved Dendritic-Cell Regulatory Program Limits Antitumour Immunity. Nature, 582, E17. https://doi.org/10.1038/s41586-020-2326-5 |
[49] |
Ginhoux, F., Guilliams, M. and Merad, M. (2022) Expanding Dendritic Cell Nomenclature in the Single-Cell Era. Nature Reviews Immunology, 22, 67-68. https://doi.org/10.1038/s41577-022-00675-7 |
[50] |
Cheng, S., Li, Z., Gao, R., Xing, B., Gao, Y., Yang, Y., et al. (2021) A Pan-Cancer Single-Cell Transcriptional Atlas of Tumor Infiltrating Myeloid Cells. Cell, 184, 792-809.e23. https://doi.org/10.1016/j.cell.2021.01.010 |
[51] |
Zilionis, R., Engblom, C., Pfirschke, C., Savova, V., Zemmour, D., Saatcioglu, H.D., et al. (2019) Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity, 50, 1317-1334.e10. https://doi.org/10.1016/j.immuni.2019.03.009 |
[52] |
Maier, B., Leader, A.M., Chen, S.T., Tung, N., Chang, C., LeBerichel, J., et al. (2020) A Conserved Dendritic-Cell Regulatory Program Limits Antitumour Immunity. Nature, 580, 257-262. https://doi.org/10.1038/s41586-020-2134-y |
[53] |
Zhang, X., Peng, L., Luo, Y., Zhang, S., Pu, Y., Chen, Y., et al. (2021) Dissecting Esophageal Squamous-Cell Carcinoma Ecosystem by Single-Cell Transcriptomic Analysis. Nature Communications, 12, Article No. 5291. https://doi.org/10.1038/s41467-021-25539-x |
[54] |
Tang, M., Diao, J. and Cattral, M.S. (2016) Molecular Mechanisms Involved in Dendritic Cell Dysfunction in Cancer. Cellular and Molecular Life Sciences, 74, 761-776. https://doi.org/10.1007/s00018-016-2317-8 |
[55] |
Zhu, S., Yang, N., Wu, J., Wang, X., Wang, W., Liu, Y., et al. (2020) Tumor Microenvironment-Related Dendritic Cell Deficiency: A Target to Enhance Tumor Immunotherapy. Pharmacological Research, 159, Article ID: 104980. https://doi.org/10.1016/j.phrs.2020.104980 |
[56] |
Takahashi, A., Kono, K., Ichihara, F., Sugai, H., Fujii, H. and Matsumoto, Y. (2004) Vascular Endothelial Growth Factor Inhibits Maturation of Dendritic Cells Induced by Lipopolysaccharide, but Not by Proinflammatory Cytokines. Cancer Immunology, Immunotherapy, 53, 543-550. https://doi.org/10.1007/s00262-003-0466-8 |
[57] |
Zelenay, S., van der Veen, A.G., Böttcher, J.P., Snelgrove, K.J., Rogers, N., Acton, S.E., et al. (2015) Cyclooxygenase-dependent Tumor Growth through Evasion of Immunity. Cell, 162, 1257-1270. https://doi.org/10.1016/j.cell.2015.08.015 |
[58] |
Böttcher, J.P., Bonavita, E., Chakravarty, P., Blees, H., Cabeza-Cabrerizo, M., Sammicheli, S., et al. (2018) NK Cells Stimulate Recruitment of CDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell, 172, 1022-1037.e14. https://doi.org/10.1016/j.cell.2018.01.004 |
[59] |
Gao, F., Liu, C., Guo, J., Sun, W., Xian, L., Bai, D., et al. (2015) Radiation-Driven Lipid Accumulation and Dendritic Cell Dysfunction in Cancer. Scientific Reports, 5, Article No. 9613. https://doi.org/10.1038/srep09613 |
[60] |
Papaspyridonos, M., Matei, I., Huang, Y., do Rosario Andre, M., Brazier-Mitouart, H., Waite, J.C., et al. (2015) Id1 Suppresses Anti-Tumour Immune Responses and Promotes Tumour Progression by Impairing Myeloid Cell Maturation. Nature Communications, 6, Article No. 6840. https://doi.org/10.1038/ncomms7840 |
[61] |
Martinez, M., Ono, N., Planutiene, M., Planutis, K., Nelson, E.L. and Holcombe, R.F. (2012) Granulocyte-Macrophage Stimulating Factor (GM-CSF) Increases Circulating Dendritic Cells but Does Not Abrogate Suppression of Adaptive Cellular Immunity in Patients with Metastatic Colorectal Cancer Receiving Chemotherapy. Cancer Cell International, 12, Article No. 2. https://doi.org/10.1186/1475-2867-12-2 |
[62] |
Traversari, C., Sozzani, S., Steffensen, K.R. and Russo, V. (2014) LXR‐Dependent and ‐Independent Effects of Oxysterols on Immunity and Tumor Growth. European Journal of Immunology, 44, 1896-1903. https://doi.org/10.1002/eji.201344292 |
[63] |
Hodge, D.R., Hurt, E.M. and Farrar, W.L. (2005) The Role of IL-6 and STAT3 in Inflammation and Cancer. European Journal of Cancer, 41, 2502-2512. https://doi.org/10.1016/j.ejca.2005.08.016 |
[64] |
Huang, B., Pan, P., Li, Q., Sato, A.I., Levy, D.E., Bromberg, J., et al. (2006) Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host. Cancer Research, 66, 1123-1131. https://doi.org/10.1158/0008-5472.can-05-1299 |
[65] |
Flies, D.B., Han, X., Higuchi, T., Zheng, L., Sun, J., Ye, J.J., et al. (2014) Coinhibitory Receptor PD-1H Preferentially Suppresses CD4+ T Cell-Mediated Immunity. Journal of Clinical Investigation, 124, 1966-1975. https://doi.org/10.1172/jci74589 |
[66] |
Munn, D.H. and Mellor, A.L. (2016) IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends in Immunology, 37, 193-207. https://doi.org/10.1016/j.it.2016.01.002 |
[67] |
Garris, C.S., Arlauckas, S.P., Kohler, R.H., Trefny, M.P., Garren, S., Piot, C., et al. (2022) Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-γ and IL-12. Immunity, 55, 1749. https://doi.org/10.1016/j.immuni.2022.07.021 |
[68] |
Neophytou, C.M., Pierides, C., Christodoulou, M., Costeas, P., Kyriakou, T. and Papageorgis, P. (2020) The Role of Tumor-Associated Myeloid Cells in Modulating Cancer Therapy. Frontiers in Oncology, 10, Article 899. https://doi.org/10.3389/fonc.2020.00899 |
[69] |
Steinbrink, K., Jonuleit, H., Müller, G., Schuler, G., Knop, J. and Enk, A.H. (1999) Interleukin-10-Treated Human Dendritic Cells Induce a Melanoma-Antigen-Specific Anergy in CD8+ T Cells Resulting in a Failure to Lyse Tumor Cells. Blood, 93, 1634-1642. https://doi.org/10.1182/blood.v93.5.1634 |
[70] |
Ren, Y., Yang, J., Sun, R., Zhang, L., Zhao, L., Li, B., et al. (2016) Viral IL-10 Down-Regulates the “MHC-I Antigen Processing Operon” through the NF-ΚB Signaling Pathway in Nasopharyngeal Carcinoma Cells. Cytotechnology, 68, 2625-2636. https://doi.org/10.1007/s10616-016-9987-9 |
[71] |
Terra, M., Oberkampf, M., Fayolle, C., Rosenbaum, P., Guillerey, C., Dadaglio, G., et al. (2018) Tumor-Derived TGfβ Alters the Ability of Plasmacytoid Dendritic Cells to Respond to Innate Immune Signaling. Cancer Research, 78, 3014-3026. https://doi.org/10.1158/0008-5472.can-17-2719 |
[72] |
Morante-Palacios, O., Fondelli, F., Ballestar, E. and Martínez-Cáceres, E.M. (2021) Tolerogenic Dendritic Cells in Autoimmunity and Inflammatory Diseases. Trends in Immunology, 42, 59-75. https://doi.org/10.1016/j.it.2020.11.001 |
[73] |
Fucikova, J., Palova-Jelinkova, L., Bartunkova, J. and Spisek, R. (2019) Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications. Frontiers in Immunology, 10, Article 2393. https://doi.org/10.3389/fimmu.2019.02393 |
[74] |
Sage, P.T., Schildberg, F.A., Sobel, R.A., Kuchroo, V.K., Freeman, G.J. and Sharpe, A.H. (2018) Dendritic Cell PD-L1 Limits Autoimmunity and Follicular T Cell Differentiation and Function. The Journal of Immunology, 200, 2592-2602. https://doi.org/10.4049/jimmunol.1701231 |