树突状细胞亚群及其功能障碍在肿瘤微环境中的研究进展
Research Progress of Dendritic Cell Subpopulations and Their Dysfunction in the Tumor Microenvironment
DOI: 10.12677/acm.2025.153891, PDF, HTML, XML,    国家自然科学基金支持
作者: 白 格*:内蒙古医科大学附属医院第一临床医学院,内蒙古 呼和浩特;高 大#:内蒙古医科大学附属医院血液内科,内蒙古 呼和浩特
关键词: 树突状细胞树突状细胞亚群肿瘤微环境功能障碍Dendritic Cell Dendritic Cell Subpopulation Tumor Microenvironment Dysfunction
摘要: 树突状细胞(dendritic cells, DCs)是免疫系统专业的抗原呈递细胞(APC),标志性功能是启动T细胞激活抗原特异性免疫反应。DCs作为宿主免疫应答的关键细胞,在连接先天免疫和适应性免疫之间发挥关键的免疫调控作用。在肿瘤微环境(tumor microenviroment, TME)中,DCs识别肿瘤相关抗原(tumor associated antigen, TAA)是启动和维持有效T细胞介导的抗肿瘤应答的关键起始步骤。大量对肿瘤DCs生物学的研究揭示,由于TME的免疫抑制性及DCs亚群的可塑性,TME中DCs往往功能障碍,并且已经证明这些DCs在抗肿瘤免疫应答中协助肿瘤逃脱免疫监视,促进肿瘤生长。本文介绍DCs的个体生物学、亚群功能及其在TME中功能障碍的机制和可能的治疗靶点。
Abstract: Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) of the immune system, with the characteristic function of initiating T cell activation of antigen-specific immune responses. DCs, as key cells in host immune response, play a crucial role in immune regulation by connecting innate and adaptive immunity. In the tumor microenvironment (TME), DCs recognize tumor-associated antigen (TAA), which is a key initiating step in initiating and maintaining effective T cell-mediated anti-tumor responses. A large amount of research on the biology of tumor DCs has revealed that due to the immunosuppressive properties of TME and the plasticity of DC subpopulations, DCs in TME often function abnormally, and it has been proven that these DCs assist tumors in escaping immune surveillance and promoting tumor growth in anti-tumor immune responses. This article introduces the individual biology, subpopulation functions, and mechanisms of functional impairment of DCs in TME, as well as possible therapeutic targets.
文章引用:白格, 高大. 树突状细胞亚群及其功能障碍在肿瘤微环境中的研究进展[J]. 临床医学进展, 2025, 15(3): 2543-2553. https://doi.org/10.12677/acm.2025.153891

1. 引言

TME是一个高度结构化的复杂生态系统。TME包括多种免疫细胞、癌相关的成纤维细胞、内皮细胞和细胞外基质等[1]。这些宿主细胞曾被认为是肿瘤发生的旁观者,但现在已知在肿瘤的发病机制中发挥关键作用。肿瘤细胞通过招募和重编程非癌宿主细胞以及通过重塑血管系统和细胞外基质,来协调一个支持肿瘤的环境,这一动态过程依赖于肿瘤细胞和TME的常驻或招募的非癌细胞之间的相互作用。肿瘤细胞能够通过多种机制调节其微环境,而TME反过来也会影响肿瘤的生长速度和扩散能力[2]。TME在调控癌症患者的免疫反应中扮演着至关重要的角色。

免疫细胞是TME中的重要组成部分,对肿瘤的发生发展具有重要影响。DCs作为免疫系统的核心组成细胞,不仅对先天性免疫反应有独特的诱导能力,而且对T细胞介导的适应性免疫反应类型的调节、免疫耐受的诱导至关重要。在TME中,DCs处于肿瘤早期免疫监视的核心地位[3],只有DCs可以刺激幼稚T细胞,同时它们也是激活继发性T细胞最有效的免疫细胞[4]。这一认识激发了人们对DCs研究的极大兴趣。近年来,DCs在国内外受到广泛关注,尤其是利用DCs免疫特性改善肿瘤患者治疗。在这里,我们将回顾DCs的个体生物学、DCs的亚群异质性,对肿瘤浸润性DCs (TIDCs)的功能障碍机制进行论述。

2. 树突状细胞概述

2.1. DCs的起源

DCs源自多能造血干细胞,CD34+造血干细胞可以产生粒细胞、单核细胞和DC祖细胞(GMDP),GMDP再次分化为淋巴系多能前体细胞(LMPP)和共同髓系前体细胞(CMP)两支[5],其中CMP继续分化为单核DC祖细胞(MDP),MDP为单核细胞祖细胞(cMoP)和共同树突状前体细胞(CDP)的来源。之后,cMoP入血,生成单核细胞,在炎症状态刺激下可生成单核细胞衍生的DCs (MoDCs) [6],而CDP在FSM样酪氨酸激酶3配体(Flt3L)诱导下产生浆细胞样树突状细胞前体(pre-pDC)和经典树突状细胞前体(pre-cDC) [7]。pre-cDC通过高内皮静脉进入淋巴结,进一步分化为经典树突状细胞(cDCs),后迁移至次级淋巴结而获得cDCs的生物行为[8] [9] (见图1)。

注:HSC:造血干细胞;GMDP:粒细胞、单核细胞和DC祖细胞;LMPP:淋巴系多能前体细胞;CMP:共同髓系前体细胞;MDP:单核DC祖细胞;CDP:共同树突状前体细胞;cMoP:单核细胞祖细胞;pre-pDC:浆细胞样树突状细胞前体;pre-cDC:经典树突状细胞前体;Monocyte:单核细胞;pDCs:浆细胞样DC;cDC1:经典DC1群;cDC2:经典DC2群;MoDCs:单核细胞衍生的DCs;LCs:朗格汉斯细胞。

Figure 1. Developmental atlas of the origin of dendritic cells (DCs)

1. 树突状细胞(DCs)起源发育图谱

2.2. 稳态下DCs的不同细胞状态

体内的DCs有四个阶段[10] [11],包括:1) 未分化的骨髓祖细胞;2) 在血液和淋巴组织中巡逻的DCs前体;3) 组织驻留的未成熟DCs;4) 次级淋巴结中成熟的DCs。

稳态条件下,DCs处于未成熟状态(imDC),其特征是高内吞活性,积极允许抗原捕获,主要组织相容性复合体(MHC)和共刺激分子(如CD80、CD86、CD40)的低表达[10]。病理状态下,imDC与T细胞相互作用可通过多种机制导致T细胞耐受,包括缺失、无反应性和调节性T细胞的产生[12]。当抗原等适当刺激后,imDC可以通过表面和细胞内受体,如Toll样受体(TLR)等,启动病原体相关分子模式(PAMPs)和损伤相关分子模式(DAMPs)分化为成熟DCs [13]。需要注意,从骨髓迁移到外周血DCs为imDC,DCs成熟是在迁移到次级淋巴结中完成的,是一个持续、多方面的过程[14] [15]。始于在外周组织遇到刺激信号,之后DCs修饰其形态和增强细胞分子的表达,最后在与T细胞相互作用中完成,此过程中DCs抗原提呈能力及迁移能力同时增加[16]。成熟DCs的特征是抗原捕获活性下降、抗原加工和呈递增强、高表达MHC及共刺激分子并且上调相关趋化因子受体和增强分泌使效应T细胞作用的细胞因子和趋化因子。在不同功能状态下,DCs可以诱导不同的免疫应答和免疫耐受。

作为免疫组织中的“哨兵细胞”,当病原体入侵时,DCs将整合环境线索,捕获抗原、呈递给T细胞从而触发免疫反应。在此过程中,DCs还可以激活NK细胞增强消除癌细胞的能力,可以影响Treg抑制功能有助于维持免疫动态平衡,可以分泌调节TME的可溶性因子等。DCs构成了一个复杂的细胞系统,需要注意,因为DCs细胞本身是一个异质性很强的群体,TME中除了组成性存在的cDC1、pDC等亚群之外,在TME会产生一种不同于组成性存在表型的亚群,这类DCs可能称为肿瘤浸润性DCs,也就是TME中的DCs,DCs不同亚群遵循体内生长发育的基本阶段,渗透到TME中的DCs包括处于不同发育阶段的不同亚群,并根据其发育阶段和所处微环境的不同,发挥着促进或抑制免疫反应的作用。

3. DCs亚群分类及其功能特点

已知DCs分类谱系比较复杂,目前根据其起源、表型和功能主要分为以下四类[7] [17] (见表1):1)经典DC (cDCs),细分为cDC1和cDC2两个亚群;2) 浆细胞样DC (pDCs);3) 单核细胞衍生的DCs (MoDCs);4) 上皮中的特殊DCs细胞群称为朗格汉斯细胞(LCs),具有异质性差异的DCs亚群在介导免疫反应方面有各自的专长。

cDC1:cDC1通过形成抗原肽-MHC I类分子呈递给CD8+ T淋巴细胞,专门进行细胞内抗原加工呈递,并形成抗肿瘤免疫应答[18]。cDC1可以通过激活NK细胞诱导CD4+ T细胞活化、辅助性T细胞1 (Th1)极化来发挥抗肿瘤免疫作用[19]。白介素-12 (IL-12)主要来源于cDC1亚群,在抗肿瘤免疫应答中发挥重要作用[20]。此外,有研究揭示cDC1在肿瘤组织中的表达与肿瘤患者预后、免疫治疗疗效积极相关[21],其特异性产生的干扰素-γ是预后良好的标志物[22]。在抗肿瘤免疫方面,cDC1是研究最广泛的亚群,因为它们在抗原交叉呈递和驱动CD8+ T细胞方面具有优越性。

cDC2:cDC2主要通过MHCII途径交叉呈递抗原,是激活CD4+ T细胞的主要APC [17]。cDC2可以促进TH1、辅助性T细胞2 (TH2)或辅助性T细胞17 (TH17)极化而调节免疫[23],有诱导广谱免疫应答的能力。此外,cDC2也具有刺激毒性CD8+ T细胞的能力,并分泌多种细胞因子。最近的研究揭示了DCs的额外复杂性[24],cDC2由真正的cDC2和DC3组成,也就是cDC2A和cDC2B [13] [16],并相互对应。有学者说,DC3是炎性DC的循环前体,因为它们与炎症基因特征相关[13],并且依赖于促炎性细胞因子,如粒细胞巨噬细胞集落刺激因子(GM-CSF) [25]。另一种观点认为,DC3可能为外周组织cDCs经过一系列成熟过程后循环浸润到TME中的活性表现形式[26] [27]。单细胞RNA测序揭示,DC3具有不同于cDCs的转录发育谱,表达不同的蛋白质,因此DC3被定义为新的DC亚群[28] [29]。与此同时,DC3被认为是浸润TME中的一类特殊细胞群,与聚集的调节性T细胞(Treg)数量和免疫检查点的表达极其相关(如PD-L) [30] [31],此外,这群细胞可以诱导CD4+ T细胞应答和白介素-17产生,在TME中具有重要的作用。值得注意,它们没有出现在无癌淋巴结中,这表明DC3需要TME才能发挥其功能[32]。对于cDC2和DC3的功能、发展以及在各种组织中的作用仍有待进一步研究阐明。此外,除了cDC2内部亚群的异质性,最近揭示了cDC2具有不同的祖细胞谱系,包括淋巴来源的pDC样细胞和骨髓来源的pre-cDC2,尽管起源不同,这两组祖细胞都分化为转录趋同的cDC2 [33],这也说明,来自不同谱系的祖细胞促成了成熟cDC2在不同组织中的多样性,为更深入地了解免疫细胞的发育和功能异质性提供了新的视角。

pDC:pDC在人类中通过其BDCA 2/CLEC4C (CD303)、CD123和BDCA 4 (CD 304)的表达被识别[34],不表达髓系抗原CD33、CD11b、CD13,但保留了GMDP的表面标志,这支持了早期的工作研究[7],pre-pDC可能来自淋巴和骨髓前体,并享有两种谱系的共有特征[35]。目前的研究更多表明,pre-pDC可能源于共同淋巴祖细胞群,该淋巴祖细胞群与CMP分化路径不同[16]。源于对pDC最初的认识,pDC在功能上专门用于抗病毒,是病毒感染后机体I型干扰素(INF-I)的重要来源。尽管与传统DCs相比,它们的交叉呈递能力较差,但pDC可通过产生INF-I在抗肿瘤免疫应答中发挥关键作用[16],诱导TME内的cDC1成熟并在局部进一步刺激CD8+ T细胞和NK细胞效应功能方面发挥额外作用[26] [36]

pDC的抗肿瘤功能由细胞毒性分子颗粒酶B和TRAIL的表达介导[37]。pDC对抗原的交叉呈递可能需要通过pDC衍生的外泌体将抗原转移至旁观者cDC [38]。尽管cDC1和cDC2都接受来自pDC的抗原,但只有cDC1是pDC介导的交叉致敏所必需的[38]。然而,在TME中,pDC更多地表现为驱动耐受和免疫抑制,通常被认为是与肿瘤预后不良相关[10] [17]。pDC可通过表达免疫抑制分子如PD-L1、ICOSL和吲哚胺2,3-双加氧酶(IDO)或促进Treg扩增来促进肿瘤生长[37]。此外,根据剂量和时间,INF-I可以促进癌症进展和免疫逃避[39]。有趣的是,pDC在TME内的作用可根据肿瘤类型和细胞相互作用而变化,从而影响预后。在黑色素瘤中,循环pDC水平降低与总生存期和无进展生存期的负面影响相关[40]。高水平pDC与NSCLC的良好预后相关,尽管研究中pDC和T细胞之间缺乏直接相互作用[41]。在三阴性乳腺癌(TNBC)中,高pDC水平与较好的预后相关,但在其他类型的乳腺癌中不相关[41]。有趣的是,高水平的pDC与免疫检查点分子的上调相关,包括PD-1、PD-L1、PD-L2、CTLA-4、LAG3和TIGIT,表明高pDC TNBC患者可能对ICB有反应[42]。此外,在TME中具有高pDC特征的患者对抗PD-L1治疗表现出更好的应答,表明pDC水平可以预测对ICB治疗的应答[43]

MoDCs:MoDCs也称炎性DC,是一种高度环境依赖性的DCs亚群。MoDCs的来源途径与上述DCs不同,但与单核细胞和cDC2共享表型和功能特征[13]。在GM-CSF和IL-4的作用下,外周组织的单核细胞衍生为MoDCs并通过CCR2-CCL2趋化因子信号转导轴募集到炎症部位,包括TME,MoDCs可以通过表达CCR2、CD88、MERTK等参与调控炎症基因的表达[44],从而诱导CD4+ T细胞并根据环境进一步分化为TH1、TH2、TH17发挥免疫应答[13] [23] [45]。MoDCs在细菌感染期间为先天免疫系统的细胞提供先天保护。此外,在TME中,作为其他DCs亚群的补充,MoDCs具有较高的肿瘤抗原加工能力,但由于一氧化氮介导的免疫抑制作用,通常具有中等的T细胞刺激能力[46],这也就是为什么大规模的DC疫苗接种源于cDCs的使用了。但是值得注意,MoDCs可以有效地再刺激淋巴结中已经由cDCs引发的效应T细胞来增强免疫应答[7]。MoDCs的存在最近与抗PD-1检查点阻断和联合治疗的治疗反应相关[47]。由于MoDCs与其他DC亚群重叠,因此需要进一步研究来具体识别MoDCs。

mregDCs:与DC3相反,mregDCs不代表表征的细胞亚群,而是代表活化的细胞类型[13]。mregDCs代表了两种常规亚群的成熟状态,cDC1和cDC2可在肿瘤抗原摄取后分化为mregDCs,这限制了人和小鼠癌症中的抗肿瘤应答[48]-[50]。不同的scRNA-seq癌症研究在小鼠和人类的浸润性cDC1和cDC2中绘制了相同的基因签名[48] [50] [51]。尽管共享相同的细胞状态,但只有cDC1样mregDCs与IL-12B的表达相关[50],表明即使在获得“mreg”基因程序后,其DCs谱系特征也得以保留。最近的研究表明,mregDCs存在于头颈部鳞状细胞癌(HNSCC)的TME中,具有迁移和成熟的表型。在HNSCC中,mregDCs特征基因与Treg特征基因强烈相关[37]。mregDCs对肿瘤应答性T细胞具有调节活性。mregDCs由成熟特征(如CD 80、CD 86和LAMP 3)、迁移特征(如CCR 7)和免疫调节特征(如PD-L1/PD-L2、IDO1和TIM-3)的共存定义[37] [39] [50] [52]。mregDCs在TME中平衡Treg和效应T细胞中发挥关键作用[41]。mregDC可以通过PD-1/PDL-1调节耗尽的CD8+ T细胞和Tregs [37]。当与初始CD8+ T细胞共培养时,肿瘤浸润性mregDCs通过PD-1/PDL-1相互作用消除了T细胞增殖和效应子功能[53]。值得注意的是,mregDCs不仅在癌症中,而且在其他病理组织中也是存在的[28],包括人类银屑病,在那里它们引发T细胞驱动的炎症[28]。这些发现表明,“mreg”基因程序可以被解释为组织诱导的成熟特征,而不是癌症相关的转录状态[15]。需要进一步的研究来充分表征健康和疾病中DC的表达程序。

Table 1. Functional characteristics of dendritic cell subpopulations

1. 树突状细胞亚群功能特点

DC亚群分类

功能特点

cDCs

cDC1

通过抗原肽-MHC I类分子呈递给CD8+ T细胞进行细胞内抗原呈递产生白介素-12 (IL-12)的主要亚群,可激活NK细胞增强抗肿瘤作用与肿瘤患者预后、免疫治疗疗效积极相关

cDC2

MHC II途径交叉呈递抗原,是激活CD4+ T细胞的主要APCcDC2内部亚群有异质性,由真正的cDC2和DC3组成

pDC

来自淋巴和骨髓前体,并享有两种谱系的共有特征可通过产生INF-I来增强抗肿瘤免疫反应交叉呈递能力较差,但在局部刺激CD8+ T细胞和NK细胞效应功能方面发挥额外作用在TME内的作用可根据肿瘤类型和细胞相互作用而变化

MoDCs

环境依赖性与cDC2共享表型和功能特征中等T细胞刺激能力,其他DCs亚群的补充与免疫检查点联合治疗反应相关

DCs的个体生长发育路径比较复杂,在相同环境下,不同亚群表型会重叠,功能也会重叠,所以独立于环境背景定义区分DCs亚群仍是具有挑战性的。DCs亚群可塑性、异质性特点会影响机体的免疫调控或免疫耐受。但是,不可忽视,由于其可塑性和异质性,DCs亚群之间的相互作用会使抗肿瘤免疫效应最大化。

4. TME中DCs相关功能障碍机制

TME中复杂交错的机制导致DCs功能障碍,DCs功能障碍是参与肿瘤发生发展的一个重要机制。T细胞有效抗肿瘤应答与DCs的成熟状态、迁移浸润、亚型和细胞数量都密不可分。大量体内及体外的研究提示TIDCs有数量和功能上的缺陷,其中数量不足可能是由于DCs分化不足、迁移受损、浸润减少和凋亡加速,功能障碍包括DCs呈递抗原和诱导T细胞能力的下降以及DCs分泌谱的改变。归结起来TME中DCs功能障碍具体的机制为:1) 免疫原性DCs数量减少;2) 成熟DCs功能的改变,包括抗原呈递和刺激T细胞的能力;3) DCs分泌谱的改变;4) 耐受性DCs的积累[10] [54] [55]

4.1. 免疫原性DCs数量减少

免疫原性DCs数量减少指能引起有效抗肿瘤免疫应答的DCs数量减少。除了谱系特异性转录因子外,TME中可溶性因子对DCs分化成熟、募集迁移也有不可忽视的影响。TME中主要存在缺氧和酸中毒改变,缺氧通过激活转录因子HIF-1诱导血管内皮生长因子(VEGF)生成,VEGF可影响DCs从pre-cDC分化,其水平升高与浸润和循环DCs数量减少相关[56]。前列腺素E2 (PGE2)可由癌细胞通过异常的环氧化酶活动产生,PGE2可抑制DCs抗原呈递能力,限制在肿瘤中的浸润[57],并通过降低NK细胞活性和趋化因子的分泌来减少cDC1向TME的募集浸润的数量[58] [59]。白介素-6 (IL-6)抑制了DCs从CD34+骨髓祖细胞的分化,同时,IL-6可抑制DCs成熟,抑制细胞内MHC II类分子表达,并降低趋化因子受体-7 (CCR7)表达[60],而CCR7是DCs迁移至淋巴组织的关键趋化因子受体[61]。肿瘤源性氧化固醇已显示可下调CCR7表达,阻碍DCs迁移至次级淋巴结进而抑制抗肿瘤免疫应答[62]。肿瘤细胞能分泌氧化脂质,可以通过隔离HSP70蛋白和减少MHC-1到质膜的移位来抑制交叉呈递特别是三酰基甘油,它的积累可缩短DCs的寿命并导致功能障碍[59]。信号转导与转录激活因子3 (STAT3)作为致癌驱动因子,其信号通路的激活是抑制DCs成熟的一个关键[63]。STAT3介导的致癌信号传导可通过产生免疫抑制性可溶性因子(如IL-10)以及与免疫调节亚群的致耐受性相互作用(包括TGF-β依赖性诱导TCR和诱导IDO)抑制DC分化和成熟[58]

4.2. 成熟DCs功能的改变

成熟DCs良好功能的发挥可能对控制癌症的长期保护性免疫至关重要,但其在TME中往往功能抑制,且几乎不可逆。肿瘤源性抑制因子调节了TIDCs功能分子的活性和表达,抑制了DCs的内吞活性,导致肿瘤抗原摄取不足[54]。且由于TME的特性,TME中存在大量髓源性抑制细胞(MDSC),它们可以抑制DCs在淋巴结中对T细胞的致敏[64],诱导T细胞失能并诱导Treg的生成,所以靶向MDSC介导的DCs功能失调机制可能为增强抗肿瘤治疗的一个方向。此外,TME中DCs功能会改变从而减弱抗肿瘤免疫,甚至加剧免疫逃逸。TIDCs表达T细胞激活可变区结构域免疫球蛋白抑制物抑制了T细胞特异性抗肿瘤免疫作用[65],同时,其促炎细胞因子的分泌减少也会导致T细胞激活效率低下。研究发现[66],TIDCs通过表达吲哚胺-2,3-双加氧酶(IDO)可抑制CD8+ T细胞、NK细胞和浆细胞的增殖和效应因子功能,并且促进T细胞分化形成Treg。

4.3. DCs分泌谱的改变

DCs的分泌谱在TME中普遍发生改变:促炎细胞因子分泌减少,免疫抑制因子分泌增加。cDC1通过非经典NF-κB依赖性机制分泌IL-12,IL-12在诱导Th1以及CTL应答方面发挥关键作用,TME中IL-12水平升高与cDC1浸润增加有关[67]。相反,TIDCs可分泌高水平的免疫抑制因子如白介素-10 (IL-10)和转化生长因子β (TGF-β),表达低水平的IL-12 [68]。分泌的IL-10可通过降低共刺激分子的表达将imDC转化为致耐受性DC (tolDCs) [60] [69],使DCs在没有共刺激信号的情况下呈递TAA会导致T细胞无反应性[70],并且可拮抗Th1细胞因子的功能,被认为是强有力的免疫抑制因子[55]。此外,IL-10也可由肿瘤源性抑制细胞分泌来减少DCs对IL-12的分泌。TGF-β可通过抑制MHC II基因的表达抑制DCs的内吞活性,减弱抗原呈递能力[71]

4.4. 耐受性DCs的积累

TME会驱动DCs从免疫刺激表型到免疫抑制表型的功能转换,产生tolDCs [55] [72],例如TME中的IL-10。tolDCs可直接分泌IL-10、TGF-β、视黄酸(Ra)等具有耐受性活性的细胞因子,抑制T细胞活性,诱导Treg和调节性B细胞(Breg)的分化。这些细胞因子可以启动一个耐受原循环[73],因为tolDCs诱导的Treg和Breg可以再次产生IL-10、TGF-β、Ra,这些也刺激tolDCs从单核细胞和DCs祖细胞分化而来,这样的循环积累可能加剧了TME的免疫抑制特性。此外,cDCs可进行性表达多种免疫检查点,如程序性死亡蛋白1 (PD-1),与T细胞表达的程序性死亡配体1 (PD-L1)结合后,可抑制T细胞增殖和细胞因子的产生[74];cDC1高表达T细胞免疫球蛋白粘蛋白-3 (TIM-3),可与肿瘤细胞释放的高迁移率族蛋白1 (HMGB1)分子结合,相互作用后可阻断DCs感知识别肿瘤细胞释放核酸抗原[13],抑制IL-12介导的抗肿瘤作用,而且会增加CD8+ T细胞的衰竭[10]。已知这些检查点可作为可行的靶点来增强抗肿瘤免疫。

TME中多种内在机制导致DCs功能障碍,进一步促进免疫耐受,导致不能有效抗原提呈、激活T细胞杀伤肿瘤细胞作用下降,介导了免疫监视失败和肿瘤细胞消除失败。

5. 结语

DCs是一群复杂的免疫细胞群,在引发抗肿瘤免疫方面扮演重要角色,然而,DCs的异质性和TME的免疫抑制性会削弱它们的抗肿瘤功能。了解了DCs在抗肿瘤应答中功能缺陷的相关机制后,已经确定,DCs缺陷的潜在机制与肿瘤细胞和TME中的各种其他组分细胞以及这些细胞中的可溶性因子、受体、配体、趋化因子和信号传导途径有关,这些参与DCs功能障碍的分子在未来可以作为扭转DCs功能的潜在靶点。目前DCs在肿瘤免疫治疗领域展现了巨大的潜力,相信未来DCs能为更多疾病治疗带来新希望。

基金项目

本工作得到了国家自然科学基金项目(批准号:82360042)、内蒙古医科大学附属医院研究项目(2023NYFY008)、内蒙古医学大学研究项目(YKD2023MS014)、内蒙古自然科学基金(2023LHMS8042)的资助。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] De Visser, K.E. and Joyce, J.A. (2023) The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth. Cancer Cell, 41, 374-403.
https://doi.org/10.1016/j.ccell.2023.02.016
[2] Pitt, J.M., Marabelle, A., Eggermont, A., Soria, J.-C., Kroemer, G. and Zitvogel, L. (2016) Targeting the Tumor Microenvironment: Removing Obstruction to Anticancer Immune Responses and Immunotherapy. Annals of Oncology, 27, 1482-1492.
https://doi.org/10.1093/annonc/mdw168
[3] Hubert, M., Gobbini, E., Bendriss-Vermare, N., Caux, C. and Valladeau-Guilemond, J. (2019) Human Tumor-Infiltrating Dendritic Cells: From in Situ Visualization to High-Dimensional Analyses. Cancers, 11, Article 1082.
https://doi.org/10.3390/cancers11081082
[4] Wu, R. and Murphy, K.M. (2022) DCs at the Center of Help: Origins and Evolution of the Three-Cell-Type Hypothesis. Journal of Experimental Medicine, 219, e20211519.
https://doi.org/10.1084/jem.20211519
[5] Collin, M. and Bigley, V. (2018) Human dendritic cell subsets: an update. Immunology, 154, 3-20.
https://doi.org/10.1111/imm.12888
[6] Macri, C., Pang, E.S., Patton, T. and O’Keeffe, M. (2018) Dendritic Cell Subsets. Seminars in Cell & Developmental Biology, 84, 11-21.
https://doi.org/10.1016/j.semcdb.2017.12.009
[7] Segura, E. (2022) Human Dendritic Cell Subsets: An Updated View of Their Ontogeny and Functional Specialization. European Journal of Immunology, 52, 1759-1767.
https://doi.org/10.1002/eji.202149632
[8] Geissmann, F., Manz, M.G., Jung, S., Sieweke, M.H., Merad, M. and Ley, K. (2010) Development of Monocytes, Macrophages, and Dendritic Cells. Science, 327, 656-661.
https://doi.org/10.1126/science.1178331
[9] Liu, K., Victora, G.D., Schwickert, T.A., Guermonprez, P., Meredith, M.M., Yao, K., et al. (2009) In Vivo Analysis of Dendritic Cell Development and Homeostasis. Science, 324, 392-397.
https://doi.org/10.1126/science.1170540
[10] Gabrilovich, D. (2004) Mechanisms and Functional Significance of Tumour-Induced Dendritic-Cell Defects. Nature Reviews Immunology, 4, 941-952.
https://doi.org/10.1038/nri1498
[11] Worbs, T., Hammerschmidt, S.I. and Förster, R. (2016) Dendritic Cell Migration in Health and Disease. Nature Reviews Immunology, 17, 30-48.
https://doi.org/10.1038/nri.2016.116
[12] Bertolini, T.B., Biswas, M., Terhorst, C., Daniell, H., Herzog, R.W. and Piñeros, A.R. (2021) Role of Orally Induced Regulatory T Cells in Immunotherapy and Tolerance. Cellular Immunology, 359, Article ID: 104251.
https://doi.org/10.1016/j.cellimm.2020.104251
[13] Del Prete, A., Salvi, V., Soriani, A., Laffranchi, M., Sozio, F., Bosisio, D., et al. (2023) Dendritic Cell Subsets in Cancer Immunity and Tumor Antigen Sensing. Cellular & Molecular Immunology, 20, 432-447.
https://doi.org/10.1038/s41423-023-00990-6
[14] Lanzavecchia, A. and Sallusto, F. (2001) The Instructive Role of Dendritic Cells on T Cell Responses: Lineages, Plasticity and Kinetics. Current Opinion in Immunology, 13, 291-298.
https://doi.org/10.1016/s0952-7915(00)00218-1
[15] Kvedaraite, E. and Ginhoux, F. (2022) Human Dendritic Cells in Cancer. Science Immunology, 7, eabm9409.
https://doi.org/10.1126/sciimmunol.abm9409
[16] Marciscano, A.E. and Anandasabapathy, N. (2021) The Role of Dendritic Cells in Cancer and Anti-Tumor Immunity. Seminars in Immunology, 52, Article ID: 101481.
https://doi.org/10.1016/j.smim.2021.101481
[17] Hubert, M., Gobbini, E., Bendriss-Vermare, N., Caux, C. and Valladeau-Guilemond, J. (2019) Human Tumor-Infiltrating Dendritic Cells: From in Situ Visualization to High-Dimensional Analyses. Cancers, 11, Article 1082.
https://doi.org/10.3390/cancers11081082
[18] Peter, S., Charles-Antoine, D., Jinmiao, C., et al. (2017) Mapping the Human DC Lineage through the Integration of High-Dimensional Techniques. Science, 356, eaag3009.
[19] Everts, B., Tussiwand, R., Dreesen, L., Fairfax, K.C., Huang, S.C., Smith, A.M., et al. (2015) Migratory CD103+ Dendritic Cells Suppress Helminth-Driven Type 2 Immunity through Constitutive Expression of IL-12. Journal of Experimental Medicine, 213, 35-51.
https://doi.org/10.1084/jem.20150235
[20] Subbiah, V., Murthy, R., Hong, D.S., Prins, R.M., Hosing, C., Hendricks, K., et al. (2018) Cytokines Produced by Dendritic Cells Administered Intratumorally Correlate with Clinical Outcome in Patients with Diverse Cancers. Clinical Cancer Research, 24, 3845-3856.
https://doi.org/10.1158/1078-0432.ccr-17-2707
[21] Böttcher, J.P. and Reis e Sousa, C. (2018) The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends in Cancer, 4, 784-792.
https://doi.org/10.1016/j.trecan.2018.09.001
[22] Hubert, M., Gobbini, E., Couillault, C., Manh, T.V., Doffin, A., Berthet, J., et al. (2020) IFN-III Is Selectively Produced by Cdc1 and Predicts Good Clinical Outcome in Breast Cancer. Science Immunology, 5, eaav3942.
https://doi.org/10.1126/sciimmunol.aav3942
[23] Plesca, I., Müller, L., Böttcher, J.P., Medyouf, H., Wehner, R. and Schmitz, M. (2022) Tumor‐Associated Human Dendritic Cell Subsets: Phenotype, Functional Orientation, and Clinical Relevance. European Journal of Immunology, 52, 1750-1758.
https://doi.org/10.1002/eji.202149487
[24] Dutertre, C., Becht, E., Irac, S.E., Khalilnezhad, A., Narang, V., Khalilnezhad, S., et al. (2019) Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity, 51, 573-589.e8.
https://doi.org/10.1016/j.immuni.2019.08.008
[25] Bourdely, P., Anselmi, G., Vaivode, K., Ramos, R.N., Missolo-Koussou, Y., Hidalgo, S., et al. (2020) Transcriptional and Functional Analysis of CD1c+ Human Dendritic Cells Identifies a CD163+ Subset Priming CD8+CD103+ T Cells. Immunity, 53, 335-352.e8.
https://doi.org/10.1016/j.immuni.2020.06.002
[26] Rautela, J., Baschuk, N., Slaney, C.Y., Jayatilleke, K.M., Xiao, K., Bidwell, B.N., et al. (2015) Loss of Host Type-I IFN Signaling Accelerates Metastasis and Impairs NK-Cell Antitumor Function in Multiple Models of Breast Cancer. Cancer Immunology Research, 3, 1207-1217.
https://doi.org/10.1158/2326-6066.cir-15-0065
[27] Zilionis, R., Engblom, C., Pfirschke, C., Savova, V., Zemmour, D., Saatcioglu, H.D., et al. (2019) Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity, 50, 1317-1334.e10.
https://doi.org/10.1016/j.immuni.2019.03.009
[28] Gerhard, G.M., Bill, R., Messemaker, M., Klein, A.M. and Pittet, M.J. (2020) Tumor-Infiltrating Dendritic Cell States Are Conserved across Solid Human Cancers. Journal of Experimental Medicine, 218, e20200264.
https://doi.org/10.1084/jem.20200264
[29] Cytlak, U., Resteu, A., Pagan, S., Green, K., Milne, P., Maisuria, S., et al. (2020) Differential IRF8 Transcription Factor Requirement Defines Two Pathways of Dendritic Cell Development in Humans. Immunity, 53, 353-370.e8.
https://doi.org/10.1016/j.immuni.2020.07.003
[30] Zhang, Q., He, Y., Luo, N., Patel, S.J., Han, Y., Gao, R., et al. (2019) Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell, 179, 829-845.e20.
https://doi.org/10.1016/j.cell.2019.10.003
[31] Cheng, S., Li, Z., Gao, R., Xing, B., Gao, Y., Yang, Y., et al. (2021) A Pan-Cancer Single-Cell Transcriptional Atlas of Tumor Infiltrating Myeloid Cells. Cell, 184, 792-809.e23.
https://doi.org/10.1016/j.cell.2021.01.010
[32] Zhang, Q., He, Y., Luo, N., Patel, S.J., Han, Y., Gao, R., et al. (2019) Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell, 179, 829-845.e20.
https://doi.org/10.1016/j.cell.2019.10.003
[33] Rodrigues, P.F., Trsan, T., Cvijetic, G., Khantakova, D., Panda, S.K., Liu, Z., et al. (2024) Progenitors of Distinct Lineages Shape the Diversity of Mature Type 2 Conventional Dendritic Cells. Immunity, 57, 1567-1585.e5.
https://doi.org/10.1016/j.immuni.2024.05.007
[34] Musumeci, A., Lutz, K., Winheim, E. and Krug, A.B. (2019) What Makes a pDC: Recent Advances in Understanding Plasmacytoid DC Development and Heterogeneity. Frontiers in Immunology, 10, Article 1222.
https://doi.org/10.3389/fimmu.2019.01222
[35] Dress, R.J., Dutertre, C., Giladi, A., Schlitzer, A., Low, I., Shadan, N.B., et al. (2019) Plasmacytoid Dendritic Cells Develop from Ly6D+ Lymphoid Progenitors Distinct from the Myeloid Lineage. Nature Immunology, 20, 852-864.
https://doi.org/10.1038/s41590-019-0420-3
[36] Fuertes, M.B., Kacha, A.K., Kline, J., Woo, S., Kranz, D.M., Murphy, K.M., et al. (2011) Host Type I IFN Signals Are Required for Antitumor CD8+ T Cell Responses through CD8α+ Dendritic Cells. Journal of Experimental Medicine, 208, 2005-2016.
https://doi.org/10.1084/jem.20101159
[37] Minohara, K., Imai, M., Matoba, T., Wing, J.B., Shime, H., Odanaka, M., et al. (2023) Mature Dendritic Cells Enriched in Regulatory Molecules May Control Regulatory T Cells and the Prognosis of Head and Neck Cancer. Cancer Science, 114, 1256-1269.
https://doi.org/10.1111/cas.15698
[38] Shen, H., Yang, E.S., Conry, M., Fiveash, J., Contreras, C., Bonner, J.A., et al. (2019) Predictive Biomarkers for Immune Checkpoint Blockade and Opportunities for Combination Therapies. Genes & Diseases, 6, 232-246.
https://doi.org/10.1016/j.gendis.2019.06.006
[39] Dixon, K.O., Tabaka, M., Schramm, M.A., Xiao, S., Tang, R., Dionne, D., et al. (2021) TIM-3 Restrains Anti-Tumour Immunity by Regulating Inflammasome Activation. Nature, 595, 101-106.
https://doi.org/10.1038/s41586-021-03626-9
[40] Chevolet, I., Speeckaert, R., Schreuer, M., Neyns, B., Krysko, O., Bachert, C., et al. (2015) Clinical Significance of Plasmacytoid Dendritic Cells and Myeloid-Derived Suppressor Cells in Melanoma. Journal of Translational Medicine, 13, Article No. 9.
https://doi.org/10.1186/s12967-014-0376-x
[41] Mazzoccoli, L. and Liu, B. (2024) Dendritic Cells in Shaping Anti-Tumor T Cell Response. Cancers, 16, Article 2211.
https://doi.org/10.3390/cancers16122211
[42] Oshi, M., Newman, S., Tokumaru, Y., Yan, L., Matsuyama, R., Kalinski, P., et al. (2020) Plasmacytoid Dendritic Cell (pDC) Infiltration Correlate with Tumor Infiltrating Lymphocytes, Cancer Immunity, and Better Survival in Triple Negative Breast Cancer (TNBC) More Strongly than Conventional Dendritic Cell (cDC). Cancers, 12, Article 3342.
https://doi.org/10.3390/cancers12113342
[43] Laheurte, C., Seffar, E., Gravelin, E., Lecuelle, J., Renaudin, A., Boullerot, L., et al. (2022) Interplay between Plasmacytoid Dendritic Cells and Tumor-Specific T Cells in Peripheral Blood Influences Long-Term Survival in Non-Small Cell Lung Carcinoma. Cancer Immunology, Immunotherapy, 72, 579-589.
https://doi.org/10.1007/s00262-022-03271-9
[44] Min, J., Yang, D., Kim, M., Haam, K., Yoo, A., Choi, J., et al. (2018) Inflammation Induces Two Types of Inflammatory Dendritic Cells in Inflamed Lymph Nodes. Experimental & Molecular Medicine, 50, e458-e458.
https://doi.org/10.1038/emm.2017.292
[45] Ma, Y., Mattarollo, S.R., Adjemian, S., Yang, H., Aymeric, L., Hannani, D., et al. (2014) CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors Upon Chemotherapy. Cancer Research, 74, 436-445.
https://doi.org/10.1158/0008-5472.can-13-1265
[46] Laoui, D., Keirsse, J., Morias, Y., Van Overmeire, E., Geeraerts, X., Elkrim, Y., et al. (2016) The Tumour Microenvironment Harbours Ontogenically Distinct Dendritic Cell Populations with Opposing Effects on Tumour Immunity. Nature Communications, 7, Article No. 13720.
https://doi.org/10.1038/ncomms13720
[47] Ye, Y., Gaugler, B., Mohty, M. and Malard, F. (2020) Plasmacytoid Dendritic Cell Biology and Its Role in Immune‐mediated Diseases. Clinical & Translational Immunology, 9, e1139.
https://doi.org/10.1002/cti2.1139
[48] Maier, B., Leader, A.M., Chen, S.T., Tung, N., Chang, C., LeBerichel, J., et al. (2020) Author Correction: A Conserved Dendritic-Cell Regulatory Program Limits Antitumour Immunity. Nature, 582, E17.
https://doi.org/10.1038/s41586-020-2326-5
[49] Ginhoux, F., Guilliams, M. and Merad, M. (2022) Expanding Dendritic Cell Nomenclature in the Single-Cell Era. Nature Reviews Immunology, 22, 67-68.
https://doi.org/10.1038/s41577-022-00675-7
[50] Cheng, S., Li, Z., Gao, R., Xing, B., Gao, Y., Yang, Y., et al. (2021) A Pan-Cancer Single-Cell Transcriptional Atlas of Tumor Infiltrating Myeloid Cells. Cell, 184, 792-809.e23.
https://doi.org/10.1016/j.cell.2021.01.010
[51] Zilionis, R., Engblom, C., Pfirschke, C., Savova, V., Zemmour, D., Saatcioglu, H.D., et al. (2019) Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity, 50, 1317-1334.e10.
https://doi.org/10.1016/j.immuni.2019.03.009
[52] Maier, B., Leader, A.M., Chen, S.T., Tung, N., Chang, C., LeBerichel, J., et al. (2020) A Conserved Dendritic-Cell Regulatory Program Limits Antitumour Immunity. Nature, 580, 257-262.
https://doi.org/10.1038/s41586-020-2134-y
[53] Zhang, X., Peng, L., Luo, Y., Zhang, S., Pu, Y., Chen, Y., et al. (2021) Dissecting Esophageal Squamous-Cell Carcinoma Ecosystem by Single-Cell Transcriptomic Analysis. Nature Communications, 12, Article No. 5291.
https://doi.org/10.1038/s41467-021-25539-x
[54] Tang, M., Diao, J. and Cattral, M.S. (2016) Molecular Mechanisms Involved in Dendritic Cell Dysfunction in Cancer. Cellular and Molecular Life Sciences, 74, 761-776.
https://doi.org/10.1007/s00018-016-2317-8
[55] Zhu, S., Yang, N., Wu, J., Wang, X., Wang, W., Liu, Y., et al. (2020) Tumor Microenvironment-Related Dendritic Cell Deficiency: A Target to Enhance Tumor Immunotherapy. Pharmacological Research, 159, Article ID: 104980.
https://doi.org/10.1016/j.phrs.2020.104980
[56] Takahashi, A., Kono, K., Ichihara, F., Sugai, H., Fujii, H. and Matsumoto, Y. (2004) Vascular Endothelial Growth Factor Inhibits Maturation of Dendritic Cells Induced by Lipopolysaccharide, but Not by Proinflammatory Cytokines. Cancer Immunology, Immunotherapy, 53, 543-550.
https://doi.org/10.1007/s00262-003-0466-8
[57] Zelenay, S., van der Veen, A.G., Böttcher, J.P., Snelgrove, K.J., Rogers, N., Acton, S.E., et al. (2015) Cyclooxygenase-dependent Tumor Growth through Evasion of Immunity. Cell, 162, 1257-1270.
https://doi.org/10.1016/j.cell.2015.08.015
[58] Böttcher, J.P., Bonavita, E., Chakravarty, P., Blees, H., Cabeza-Cabrerizo, M., Sammicheli, S., et al. (2018) NK Cells Stimulate Recruitment of CDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell, 172, 1022-1037.e14.
https://doi.org/10.1016/j.cell.2018.01.004
[59] Gao, F., Liu, C., Guo, J., Sun, W., Xian, L., Bai, D., et al. (2015) Radiation-Driven Lipid Accumulation and Dendritic Cell Dysfunction in Cancer. Scientific Reports, 5, Article No. 9613.
https://doi.org/10.1038/srep09613
[60] Papaspyridonos, M., Matei, I., Huang, Y., do Rosario Andre, M., Brazier-Mitouart, H., Waite, J.C., et al. (2015) Id1 Suppresses Anti-Tumour Immune Responses and Promotes Tumour Progression by Impairing Myeloid Cell Maturation. Nature Communications, 6, Article No. 6840.
https://doi.org/10.1038/ncomms7840
[61] Martinez, M., Ono, N., Planutiene, M., Planutis, K., Nelson, E.L. and Holcombe, R.F. (2012) Granulocyte-Macrophage Stimulating Factor (GM-CSF) Increases Circulating Dendritic Cells but Does Not Abrogate Suppression of Adaptive Cellular Immunity in Patients with Metastatic Colorectal Cancer Receiving Chemotherapy. Cancer Cell International, 12, Article No. 2.
https://doi.org/10.1186/1475-2867-12-2
[62] Traversari, C., Sozzani, S., Steffensen, K.R. and Russo, V. (2014) LXR‐Dependent and ‐Independent Effects of Oxysterols on Immunity and Tumor Growth. European Journal of Immunology, 44, 1896-1903.
https://doi.org/10.1002/eji.201344292
[63] Hodge, D.R., Hurt, E.M. and Farrar, W.L. (2005) The Role of IL-6 and STAT3 in Inflammation and Cancer. European Journal of Cancer, 41, 2502-2512.
https://doi.org/10.1016/j.ejca.2005.08.016
[64] Huang, B., Pan, P., Li, Q., Sato, A.I., Levy, D.E., Bromberg, J., et al. (2006) Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host. Cancer Research, 66, 1123-1131.
https://doi.org/10.1158/0008-5472.can-05-1299
[65] Flies, D.B., Han, X., Higuchi, T., Zheng, L., Sun, J., Ye, J.J., et al. (2014) Coinhibitory Receptor PD-1H Preferentially Suppresses CD4+ T Cell-Mediated Immunity. Journal of Clinical Investigation, 124, 1966-1975.
https://doi.org/10.1172/jci74589
[66] Munn, D.H. and Mellor, A.L. (2016) IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends in Immunology, 37, 193-207.
https://doi.org/10.1016/j.it.2016.01.002
[67] Garris, C.S., Arlauckas, S.P., Kohler, R.H., Trefny, M.P., Garren, S., Piot, C., et al. (2022) Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-γ and IL-12. Immunity, 55, 1749.
https://doi.org/10.1016/j.immuni.2022.07.021
[68] Neophytou, C.M., Pierides, C., Christodoulou, M., Costeas, P., Kyriakou, T. and Papageorgis, P. (2020) The Role of Tumor-Associated Myeloid Cells in Modulating Cancer Therapy. Frontiers in Oncology, 10, Article 899.
https://doi.org/10.3389/fonc.2020.00899
[69] Steinbrink, K., Jonuleit, H., Müller, G., Schuler, G., Knop, J. and Enk, A.H. (1999) Interleukin-10-Treated Human Dendritic Cells Induce a Melanoma-Antigen-Specific Anergy in CD8+ T Cells Resulting in a Failure to Lyse Tumor Cells. Blood, 93, 1634-1642.
https://doi.org/10.1182/blood.v93.5.1634
[70] Ren, Y., Yang, J., Sun, R., Zhang, L., Zhao, L., Li, B., et al. (2016) Viral IL-10 Down-Regulates the “MHC-I Antigen Processing Operon” through the NF-ΚB Signaling Pathway in Nasopharyngeal Carcinoma Cells. Cytotechnology, 68, 2625-2636.
https://doi.org/10.1007/s10616-016-9987-9
[71] Terra, M., Oberkampf, M., Fayolle, C., Rosenbaum, P., Guillerey, C., Dadaglio, G., et al. (2018) Tumor-Derived TGfβ Alters the Ability of Plasmacytoid Dendritic Cells to Respond to Innate Immune Signaling. Cancer Research, 78, 3014-3026.
https://doi.org/10.1158/0008-5472.can-17-2719
[72] Morante-Palacios, O., Fondelli, F., Ballestar, E. and Martínez-Cáceres, E.M. (2021) Tolerogenic Dendritic Cells in Autoimmunity and Inflammatory Diseases. Trends in Immunology, 42, 59-75.
https://doi.org/10.1016/j.it.2020.11.001
[73] Fucikova, J., Palova-Jelinkova, L., Bartunkova, J. and Spisek, R. (2019) Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications. Frontiers in Immunology, 10, Article 2393.
https://doi.org/10.3389/fimmu.2019.02393
[74] Sage, P.T., Schildberg, F.A., Sobel, R.A., Kuchroo, V.K., Freeman, G.J. and Sharpe, A.H. (2018) Dendritic Cell PD-L1 Limits Autoimmunity and Follicular T Cell Differentiation and Function. The Journal of Immunology, 200, 2592-2602.
https://doi.org/10.4049/jimmunol.1701231

Baidu
map