[1] |
Staley, K. (2015) Molecular Mechanisms of Epilepsy. Nature Neuroscience, 18, 367. https://doi.org/10.1038/nn.3947 |
[2] |
Dang, L.T. and Silverstein, F.S. (2017) Drug Treatment of Seizures and Ep-ilepsy in Newborns and Children. Pediatric Clinics of North America, 64, 1291-1308. https://doi.org/10.1016/j.pcl.2017.08.007 |
[3] |
Bell, G.S., Neligan, A. and Sander, J.W. (2014) An Unknown Quantity—The Worldwide Prevalence of Epilepsy. Epilepsia, 55, 958-962. https://doi.org/10.1111/epi.12605 |
[4] |
Vento, M., de Vries, L.S., Alberola, A., et al. (2009) Approach to Seizures in the Neonatal Period: A European Perspective. Acta Paediatrica, 99, 497-501. https://doi.org/10.1111/j.1651-2227.2009.01659.x |
[5] |
Vezzani, A., Aronica, E., Mazarati, A. and Pittman, Q.J. (2013) Epilepsy and Brain Inflammation. Experimental Neurology, 244, 11-21. https://doi.org/10.1016/j.expneurol.2011.09.033 |
[6] |
Nardou, R., Ferrari, D.C. and Ben-Ari, Y. (2013) Mecha-nisms and Effects of Seizures in the Immature Brain. Seminars in Fetal & Neonatal Medicine, 18, 175-184. https://doi.org/10.1016/j.siny.2013.02.003 |
[7] |
Miller, S.M., Goasdoue, K. and Björkman, S.T. (2017) Neonatal Seizures and Disruption to Neurotransmitter Systems. Neural Regeneration Research, 12, 216-217. https://doi.org/10.4103/1673-5374.200803 |
[8] |
Dupuis, N. and Auvin, S. (2015) Inflammation and Epilepsy in the Developing Brain: Clinical and Experimental Evidence. CNS Neuroscience & Therapeutics, 21, 141-151. https://doi.org/10.1111/cns.12371 |
[9] |
Whitehead, E., Dodds, L., Joseph, K.S., et al. (2006) Relation of Pregnancy and Neonatal Factors to Subsequent Development of Childhood Epilepsy: A Population-Based Cohort Study. Pediatrics, 117, 1298-1306. https://doi.org/10.1542/peds.2005-1660 |
[10] |
Jembrek, M.J. and Vlainic, J. (2015) GABA Receptors: Pharmaco-logical Potential and Pitfalls. Current Pharmaceutical Design, 21, 4943-4959. https://doi.org/10.2174/1381612821666150914121624 |
[11] |
Chuang, S.H. and Reddy, D.S. (2018) Genetic and Molecular Regulation of Extrasynaptic GABA-A Receptors in the Brain: Therapeutic Insights for Epilepsy. Journal of Pharmacology and Experimental Therapeutics, 364, 180-197. https://doi.org/10.1124/jpet.117.244673 |
[12] |
World Health Organization (2013) Standard Antiepileptic Drugs (Phenobarbital, Pheny-Toin, Carbamazepine, Valproic Acid) for Management of Convulsive Epilepsy in Adults and Children in WHO Mental Health Gap Action Programme mhGAP, mhGAP Evidence Resource Center, Epilepsy and Seizures. WHO, Geneva. |
[13] |
Glykys, J. and Staley, K.J. (2015) Diazepam Effect during Early Neonatal Development Correlates with Neuronal Cl-. Annals of Clinical and Translational Neurology, 2, 1055-1070. https://doi.org/10.1002/acn3.259 |
[14] |
Vesoulis, Z.A. and Mathur, A.M. (2014) Advances in Management of Ne-onatal Seizures. Indian Journal of Pediatrics, 81, 592-598. https://doi.org/10.1007/s12098-014-1457-9 |
[15] |
Sands, T.T. and Mcdonough, T.L. (2016) Recent Advances in Neonatal Seizures. Current Neurology and Neuroscience Reports, 16, 92. https://doi.org/10.1007/s11910-016-0694-x |
[16] |
Ikonomidou, C. (2009) Triggers of Apoptosis in the Immature Brain. Brain & Development, 31, 488-492. https://doi.org/10.1016/j.braindev.2009.02.006 |
[17] |
Kirmse, K., Witte, O.W. and Holthoff, K. (2011) GABAergic Depolarization during Early Cortical Development and Implications for Anticonvulsive Therapy in Neonates. Epilepsia, 52, 1532-1543. https://doi.org/10.1111/j.1528-1167.2011.03128.x |
[18] |
Wang, D.D. and Kriegstein, A.R. (2011) Blocking Early GABA Depolarization with Bumetanide Results in Permanent Alterations in Cortical Circuits and Sensorimotor Gating Deficits. Cerebral Cortex, 21, 574-587. https://doi.org/10.1093/cercor/bhq124 |
[19] |
Chamma, I., Chevy, Q., Poncer, J.C., et al. (2012) Role of the Neuronal K-Cl Co-Transporter KCC2 in Inhibitory and Excitatory Neurotransmission. Frontiers in Cellular Neuroscience, 6, 5. https://doi.org/10.3389/fncel.2012.00005 |
[20] |
Kirmse, K., Witte, O.W. and Holthoff, K. (2010) GABA Depolarizes Immature Neocortical Neurons in the Presence of the Ketone Body β-Hydroxybutyrate. Journal of Neuroscience, 30, 16002-16007. https://doi.org/10.1523/JNEUROSCI.2534-10.2010 |
[21] |
Holmes, G.L. (2009) The Long-Term Effects of Neonatal Seizures. Clinics in Perinatology, 36, 901-904. https://doi.org/10.1016/j.clp.2009.07.012 |
[22] |
Kalkman, H.O. (2011) Alterations in the Expression of Neuronal Chloride Transporters May Contribute to Schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psy-chiatry, 35, 410-414. https://doi.org/10.1016/j.pnpbp.2011.01.004 |
[23] |
Hernan, A.E. and Holmes, G.L. (2016) Antiepileptic Drug Treatment Strategies in Neonatal Epilepsy. Progress in Brain Research, 226, 179-193. https://doi.org/10.1016/bs.pbr.2016.03.011 |
[24] |
Yamada, J., Okabe, A., Toyoda, H., Kilb, W., Luhmann, H.J. and Fukuda, A. (2004) Cl− Uptake Promoting Depolarizing GABA Actions in Immature Rat Neocortical Neurones Is Me-diated by NKCC1. The Journal of Physiology, 557, 829-841. https://doi.org/10.1113/jphysiol.2004.062471 |
[25] |
Succol, F., Fiumelli, H., Benfenati, F., et al. (2012) Intracellular Chloride Concentration Influences the GABAA Receptor Subunit Composition. Nature Communications, 3, 738. https://doi.org/10.1038/ncomms1744 |
[26] |
Tyzio, R., Nardou, R., Ferrari, D.C., et al. (2014) Oxytocin-Mediated GABA Inhibition during Delivery Attenuates Autism Pathogenesis in Rodent Offspring. Science, 343, 675-679. https://doi.org/10.1126/science.1247190 |
[27] |
Sipila, S.T., Huttu, K., Yamada, J., et al. (2009) Compensatory En-hancement of Intrinsic Spiking upon NKCC1 Disruption in Neonatal Hippocampus. Journal of Neuroscience, 29, 6982-6988. https://doi.org/10.1523/JNEUROSCI.0443-09.2009 |
[28] |
Wang, D.D. and Kriegstein, A.R. (2008) GABA Regu-lates Excitatory Synapse Formation in the Neocortex via NMDA Receptor Activation. Journal of Neuroscience, 28, 5547-5558. https://doi.org/10.1523/JNEUROSCI.5599-07.2008 |
[29] |
Kahle, K.T., Barnett, S.M., Sassower, K.C., et al. (2009) Decreased Seizure Activity in a Human Neonate Treated with Bumetanide, an Inhibitor of the NAt-Kt-2Cle Cotransporter NKCC1. Journal of Child Neurology, 24, 572e6. https://doi.org/10.1177/0883073809333526 |
[30] |
Cleary, R.T., Sun, H., Huynh, T., et al. (2013) Bumetanide En-hances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures., PLoS ONE, 8, e57148. https://doi.org/10.1371/journal.pone.0057148 |
[31] |
Löscher, W., Puskarjov, M. and Kaila, K. (2013) Cation-Chloride Cotransporters NKCC1 and KCC2 as Potential Targets for Novel Antiepileptic and Antiepileptogenic Treatments. Neuropharmacology, 69, 62-74. https://doi.org/10.1016/j.neuropharm.2012.05.045 |
[32] |
Pressler, R.M., Boylan, G.B., Marlow, N., et al. (2015) Bumetanide for the Treatment of Seizures in Newborn Babies with Hypoxic Ischaemic Encephalopathy (NEMO, an Open-Label, Dose Finding, and Feasibility Phase 1/2 Trial. The Lancet Neurology, 14, 469-477. https://doi.org/10.1016/S1474-4422(14)70303-5 |
[33] |
Thoresen, M. and Sabir, H. (2015) Epilepsy: Neonatal Seizures Still Lack Safe and Effective Treatment. Nature Reviews Neurology, 11, 311-312. https://doi.org/10.1038/nrneurol.2015.74 |
[34] |
Friedel, P., Kahle, K.T., Zhang, J.W., et al. (2015) WNK1-Regulated Inhibitory Phosphorylation of the KCC2 Cotransporter Maintains the Depolarizing Action of GABA in Immature Neurons. Science Signaling, 8, ra65. https://doi.org/10.1126/scisignal.aaa0354 |
[35] |
Furukawa, M., Tsukahara, T., Tomita, K., et al. (2017) Neonatal Maternal Separation Delays the GABA Excitatory-to-Inhibitory Functional Switch by Inhibiting KCC2 Expression. Biochemical and Biophysical Research Communications, 493, 1243-1249. https://doi.org/10.1016/j.bbrc.2017.09.143 |
[36] |
Puskarjov, M., Kahle, K.T., Ruusuvuori, E., et al. (2014) Pharmacotherapeutic Targeting of Cation-Chloride Cotransporters in Neonatal Seizures. Epilepsia, 55, 806-818. https://doi.org/10.1111/epi.12620 |
[37] |
Kim, D.Y., Fenoglio, K.A., Simeone, T.A., et al. (2008) GABAA Receptor-Mediated Activation of L-Type Calcium Channels Induces Neuronal Excitation in Surgically Resected Human Hypothalamic Hamartomas. Epilepsia, 49, 861-871. https://doi.org/10.1111/j.1528-1167.2007.01455.x |