[1] |
王跃思, 姚利, 刘子锐, 等. 京津冀大气霾污染及控制策略思考[J]. 中国科学院院刊, 2013, 28(3): 353-363. |
[2] |
吴兑, 吴晓京, 李菲, 等. 1951-2005年中国大陆霾的时空变化[J]. 气象学报, 2010, 68(5): 680-688. |
[3] |
白志鹏, 蔡斌彬, 董海燕, 等. 灰霾的健康效应[J]. 环境污染与防治, 2006, 28(3): 198-201. |
[4] |
刘帅, 宋国君. 城市PM2.5健康损害评估研究[J]. 环境科学学报, 2016, 36(4): 1468-1476. |
[5] |
丁一汇, 李巧萍, 柳艳菊, 等. 空气污染与气候变化[J]. 气象, 2009, 35(3): 3-14+129. |
[6] |
Kang, S., Zhang, Q., Zhang, Y., et al. (2022) Warming and Thawing in the Mt. Everest Region: A Review of Climate and Environmental Changes. Earth-Science Reviews, 225, Article ID: 103911. https://doi.org/10.1016/j.earscirev.2021.103911 |
[7] |
Zhai, S., Jacob, D.J., Wang, X., et al. (2019) Fine Particulate Matter (PM2.5) Trends in China, 2013-2018: Separating Contributions from Anthropogenic Emissions and Meteorology. Atmospheric Chemistry and Physics, 19, 11031-11041. https://doi.org/10.5194/acp-19-11031-2019 |
[8] |
Zhang, Q., Zheng, Y., Tong, D., et al. (2019) Drivers of Improved PM2.5 Air Quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences, 116, 24463-24469. https://doi.org/10.1073/pnas.1907956116 |
[9] |
Chu, B., Ma, Q., Liu, J., et al. (2020) Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NOx and SO2 Control. Environmental Science & Technology Letters, 7, 695-700. https://doi.org/10.1021/acs.estlett.0c00403 |
[10] |
Lu, X., Zhang, S., Xing, J., et al. (2020) Progress of Air Pollution Control in China and Its Challenges and Opportunities in the Ecological Civilization Era. Engineering, 6, 1423-1431. https://doi.org/10.1016/j.eng.2020.03.014 |
[11] |
Ding, A., Huang, X., Nie, W., et al. (2019) Significant Reduction of PM2.5 in Eastern China Due to Regional-Scale Emission Control: Evidence from SORPES in 2011-2018. Atmospheric Chemistry and Physics, 19, 11791-11801. https://doi.org/10.5194/acp-19-11791-2019 |
[12] |
Liu, X.G., Li, J., Qu, Y., et al. (2013) Formation and Evolution Mechanism of Regional Haze: A Case Study in the Megacity Beijing, China. Atmospheric Chemistry and Physics, 13, 4501-4514. https://doi.org/10.5194/acp-13-4501-2013 |
[13] |
Zhang, Z., Zhang, X., Gong, D., et al. (2016) Possible Influence of Atmospheric Circulations on Winter Haze Pollution in the Beijing-Tianjin-Hebei Region, Northern China. Atmospheric Chemistry and Physics, 16, 561-571. https://doi.org/10.5194/acp-16-561-2016 |
[14] |
Huang, R., Wang, Y., Cao, J., et al. (2019) Primary Emissions versus Secondary Formation of Fine Particulate Matter in the Most Polluted City (Shijiazhuang) in North China. At-mospheric Chemistry and Physics, 19, 2283-2298. https://doi.org/10.5194/acp-19-2283-2019 |
[15] |
An, Z., Huang, R., Zhang, R., et al. (2019) Severe Haze in North-ern China: A Synergy of Anthropogenic Emissions and Atmospheric Processes. Proceedings of the National Academy of Sciences, 116, 8657-8666. https://doi.org/10.1073/pnas.1900125116 |
[16] |
郝建奇, 葛宝珠, 王自发, 等. 2013年京津冀重污染特征及其气象条件分析[J]. 环境科学学报, 2017, 37(8): 3032-3043. |
[17] |
石琳琳, 李令军, 王新辉, 等. 北京市秋冬大气污染传输特征遥感研究[J]. 环境科学学报, 2018, 38(10): 3834-3845. |
[18] |
钤伟妙, 张艳品, 陈静, 等. 石家庄大气污染物输送通道及污染源区研究[J]. 环境科学学报, 2018, 38(9): 3438-3448. |
[19] |
Dao, X., Lin, Y., Cao, F., et al. (2019) Introduction to the National Aerosol Chemical Composition Monitoring Network of China: Objectives, Current Status, and Outlook. Bulletin of the American Meteorological Society, 100, ES337-ES351. |
[20] |
Ji, D., Gao, M., Maenhaut, W., et al. (2019) The Carbonaceous Aerosol Levels Still Remain a Challenge in the Beijing-Tianjin-Hebei Region of China: Insights from Continuous High Temporal Resolution Measurements in Multiple Cities. Environment International, 126, 171-183. https://doi.org/10.1016/j.envint.2019.02.034 |
[21] |
Sun, Y., Du, W., Fu, P., et al. (2016) Primary and Secondary Aerosols in Beijing in Winter: Sources, Variations and Processes. Atmospheric Chemistry and Physics, 16, 8309-8329. https://doi.org/10.5194/acp-16-8309-2016 |
[22] |
Xu, H., Xiao, Z., Chen, K., et al. (2019) Spatial and Temporal Distribution, Chemical Characteristics, and Sources of Ambient Particulate Matter in the Beijing-Tianjin-Hebei Region. Science of the Total Environment, 658, 280-293. https://doi.org/10.1016/j.scitotenv.2018.12.164 |
[23] |
刘盈盈, 殷宝辉, 王静, 等. 济南冬季大气重污染过程颗粒物组分变化特征[J]. 环境化学, 2018, 37(12): 2749-2757. |
[24] |
刘晓迪, 孟静静, 侯战方, 等. 济南市夏、冬季PM2.5中化学组分的季节变化特征及来源解析[J]. 环境科学, 2018, 39(9): 4014-4025. |
[25] |
Sun, Y., Zhou, X. and Wang, W. (2016) Aerosol Size Distributions during Haze Episodes in Winter in Jinan, China. Particuology, 28, 77-85. https://doi.org/10.1016/j.partic.2015.12.001 |
[26] |
陶士康, 张清爽, 安静宇, 等. 基于地基观测及源清单的2017-2019年德州市秋冬季大气污染防治效果评估[J]. 环境科学研究, 2019, 32(10): 1739-1746. |
[27] |
Dao, X., Ji, D., Zhang, X., et al. (2022) Significant Reduction in Atmospheric Organic and Elemental Carbon in PM2.5 in 2+26 Cities in Northern China. Environmental Research, 2022, Article ID: 113055. https://doi.org/10.1016/j.envres.2022.113055 |
[28] |
徐伟召, 朱雯斐, 王甜甜, 等. 冬季德州市大气颗粒物消光与化学组成关系研究[J]. 环境科学学报, 2019, 39(4): 1057-1065. |
[29] |
Millet, D.B. (2005) Atmospheric Volatile Organic Compound Measurements during the Pittsburgh Air Quality Study: Results, Interpretation, and Quantification of Primary and Secondary Contributions. Journal of Geophysical Research, 110, D07S07. https://doi.org/10.1029/2004JD004601 |
[30] |
Wu, C. and Yu, J. (2016) Determination of Primary Combustion Source Organic Carbon-to-Elemental Carbon (OC/ EC) Ratio Using Ambient OC and EC Measurements: Secondary OC-EC Correlation Minimization Method. Atmospheric Chemistry and Physics, 16, 5453-5465. https://doi.org/10.5194/acp-16-5453-2016 |
[31] |
Wu, C., Wu, D. and Yu, J. (2019) Estimation and Uncertainty Analysis of Secondary Organic Carbon Using 1 Year of Hourly Organic and Elemental Carbon Data. Journal of Geo-physical Research: Atmospheres, 124, 2774-2795. https://doi.org/10.1029/2018JD029290 |
[32] |
吴兴贺, 殷耀兵, 谭瑞, 等. 华北区域点冬季二次有机气溶胶特征与影响因素[J]. 环境科学学报, 2020, 40(1): 58-64. |
[33] |
Wang, Y., Chen, Y., Wu, Z., et al. (2020) Mutual Promotion between Aerosol Particle Liquid Water and Particulate Nitrate Enhancement Leads to Severe Nitrate-Dominated Particulate Matter Pollution and Low Visibility. Atmospheric Chemistry and Physics, 20, 2161-2175. https://doi.org/10.5194/acp-20-2161-2020 |
[34] |
Xu, Q., Wang, S., Jiang, J., et al. (2019) Nitrate Dominates the Chemical Composition of PM2.5 during Haze Event in Beijing, China. Science of the Total Environment, 689, 1293-1303. https://doi.org/10.1016/j.scitotenv.2019.06.294 |
[35] |
Li, H., Zhang, Q., Zheng, B., et al. (2018) Nitrate-Driven Urban Haze Pollution during Summertime over the North China Plain. Atmospheric Chemistry and Physics, 18, 5293-5306. https://doi.org/10.5194/acp-18-5293-2018 |
[36] |
Li, H., Cheng, J., Zhang, Q., et al. (2019) Rapid Transition in Winter Aerosol Composition in Beijing from 2014 to 2017: Response to Clean Air Actions. Atmospheric Chemistry and Physics, 19, 11485-11499. https://doi.org/10.5194/acp-19-11485-2019 |
[37] |
Leung, D.M., Shi, H., Zhao, B., et al. (2020) Wintertime Partic-ulate Matter Decrease Buffered by Unfavorable Chemical Processes despite Emissions Reductions in China. Geophysical Research Letters, 47, e2020GL087721. https://doi.org/10.1029/2020GL087721 |
[38] |
Petit, J.E., Favez, O., Albinet, A., et al. (2017) A User-Friendly Tool for Comprehensive Evaluation of the Geographical Origins of Atmospheric Pollution: Wind and Trajectory Analyses. Environmental Modelling & Software, 88, 183-187. https://doi.org/10.1016/j.envsoft.2016.11.022 |
[39] |
Chen, D., Liu, X., Lang, J., et al. (2017) Estimating the Contribution of Regional Transport to PM2.5 Air Pollution in a Rural Area on the North China Plain. Science of the Total Environment, 583, 280-291. https://doi.org/10.1016/j.scitotenv.2017.01.066 |
[40] |
Squizzato, S., Masiol, M., Brunelli, A., et al. (2013) Factors Determining the Formation of Secondary Inorganic Aerosol: A Case Study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13, 1927-1939. https://doi.org/10.5194/acp-13-1927-2013 |
[41] |
Fan, M., Zhang, Y., Lin, Y., et al. (2020) Changes of Emission Sources to Nitrate Aerosols in Beijing after the Clean Air Actions: Evidence from Dual Isotope Compositions. Journal of Geophysical Research: Atmospheres, 125, e2019JD031998. https://doi.org/10.1029/2019JD031998 |