[1] |
王静, 王倩, 宋书香. 表面等离子共振技术在药物研发领域的应用进展[J]. 中国药学(英文版), 2020, 29(7): 504-513. |
[2] |
王鸣人, 段徐华, 邵泓, 陈钢. 表面等离子共振(SPR)技术在生物药物质量控制中的应用前景[J]. 中国药师, 2020, 23(11): 2257-2260. |
[3] |
O’connell, N. (2021) Protein Ligand Interactions Using Surface Plasmon Resonance. In: Cacace, A.M., Hickey, C.M. and Békés, M., Eds., Targeted Protein Degradation, Vol. 2365, Humana, New York, 3-20. https://doi.org/10.1007/978-1-0716-1665-9_1 |
[4] |
Láng, J.A., Balogh, Z.C., Nyitrai, M.F., Juhász, C., Gilicze, A.K.B., Iliás, A., et al. (2020) In Vitro Functional Characterization of Biosimilar Therapeutic Antibodies. Drug Discovery Today: Technologies, 37, 41-50. https://doi.org/10.1016/j.ddtec.2020.11.010 |
[5] |
Jason-Moller, L., Murphy, M. and Bruno, J. (2006) Overview of Biacore Systems and Their Applications. Current Protocols in Protein Science, 45, 19.13.1-19.13.14. https://doi.org/10.1002/0471140864.ps1913s45 |
[6] |
Olaru, A., Bala, C., Jaffrezic-Renault, N. and Aboul-Enein, H.Y. (2015) Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis. Critical Reviews in Analytical Chemistry, 45, 97-105. https://doi.org/10.1080/10408347.2014.881250 |
[7] |
刘芳芳. SPR传感检测细胞表面分子相互作用的方法研究[D]: [博士学位论文]. 北京: 清华大学, 2010. |
[8] |
江丽. 增强的新型表面等离子体共振传感器及其应用[D]: [博士学位论文]. 杭州: 浙江大学, 2018. |
[9] |
Forest-Nault, C., Gaudreault, J., Henry, O., Durocher, Y. and De Crescenzo, G. (2021) On the Use of Surface Plasmon Resonance Biosensing to Understand IgG-FcγR Interactions. International Journal of Molecular Sciences, 22, Article No. 6616. https://doi.org/10.3390/ijms22126616 |
[10] |
Rich, R.L. and Myszka, D.G. (2008) Survey of the Year 2007 Commercial Optical Biosensor Literature. Journal of Molecular Recognition, 21, 355-400. https://doi.org/10.1002/jmr.928 |
[11] |
Jovic, M. and Cymer, F. (2019) Qualification of a Surface Plasmon Resonance Assay to Determine Binding of IgG- Type Antibodies to Complement Component C1q. Biologicals, 61, 76-79. https://doi.org/10.1016/j.biologicals.2019.08.004 |
[12] |
De Weers, M., Tai, Y.T., Van Der Veer, M.S., Bakker, J.M., Vink, T., Jacobs, D.C.H., et al. (2011) Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. The Journal of Immunology, 186, 1840-1848. https://doi.org/10.4049/jimmunol.1003032 |
[13] |
Patel, R., Neill, A., Liu, H. and Andrien, B. (2015) IgG Subclass Specificity to C1q Determined by Surface Plasmon Resonance Using Protein L Capture Technique. Analytical Biochemistry, 479, 15-17. https://doi.org/10.1016/j.ab.2015.03.012 |
[14] |
Dekkers, G., Treffers, L., Plomp, R., Bentlage, A.E.H., de Boer, M. and Koeleman, C.A.M. (2017) Decoding the Human Immunoglobulin G-Glycan Repertoire Reveals a Spectrum of Fc-Receptor- and Complement-Mediated-Effector Activities. Frontiers in Immunology, 8, Article No. 877. https://doi.org/10.3389/fimmu.2017.00877 |
[15] |
Li, T., Dilillo, D.J., Bournazos, S., Giddens, J.P., Ravetch, J.V. and Wang, L.X. (2017) Modulating IgG Effector Function by Fc Glycan Engineering. Proceedings of the National Academy of Sciences of the United States of America, 114, 3485-3490. https://doi.org/10.1073/pnas.1702173114 |
[16] |
Hayes, J.M., Frostell, A., Cosgrave, E.F., Struwe, W.B., Potter, O., Davey, G.P., et al. (2014) Fc Gamma Receptor Glycosylation Modulates the Binding of IgG Glycoforms: A Requirement for Stable Antibody Interactions. Journal of Proteome Research, 13, 5471-5485. https://doi.org/10.1021/pr500414q |
[17] |
Abdiche, Y.N., Yeung, Y.A., Chaparro-Riggers, J., Barman, I., Strop, P., Chin, S.M., et al. (2015) The Neonatal Fc Receptor (FcRn) Binds Independently to Both Sites of the IgG Homodimer with Identical Affinity. mAbs, 7, 331-343. https://doi.org/10.1080/19420862.2015.1008353 |
[18] |
Dorion-Thibaudeau, J., Raymond, C., Lattová, E., Perreault, H., Durocher, Y. and De Crescenzo, G. (2014) Towards the Development of a Surface Plasmon Resonance Assay to Evaluate the Glycosylation Pattern of Monoclonal Antibodies Using the Extracellular Domains of CD16a and CD64. Journal of Immunological Methods, 408, 24-34. https://doi.org/10.1016/j.jim.2014.04.010 |
[19] |
Cambay, F., Henry, O., Durocher, Y. and De Crescenzo, G. (2019) Impact of N-Glycosylation on Fcγ Receptor/IgG Interactions: Unravelling Differences with an Enhanced Surface Plasmon Resonance Biosensor Assay Based on Coiled- Coil Interactions. mAbs, 11, 435-452. https://doi.org/10.1080/19420862.2019.1581017 |
[20] |
Biacore (2016) Biacore Sensor Surface Handbook. 1st Edition, Biacore, Uppsala, 13-16. |
[21] |
Drake, A.W., Tang, M.L., Papalia, G.A., Landes, G., Haak-Frendscho, M. and Klakamp, S.L. (2012) Biacore Surface Matrix Effects on the Binding Kinetics and Affinity of an Antigen/Antibody Complex. Analytical Biochemistry, 429, 58-69. https://doi.org/10.1016/j.ab.2012.06.024 |
[22] |
Douzi, B. (2017) Protein-Protein Interactions: Surface Plasmon Resonance. In: Journet, L. and Cascales, E., Eds., Bacterial Protein Secretion Systems, Humana Press, New York, 257-275. https://doi.org/10.1007/978-1-4939-7033-9_21 |
[23] |
Knowling, S., Clark, J., Sjuts, H. and Abdiche, Y.N. (2020) Direct Comparison of Label-Free Biosensor Binding Kinetics Obtained on the Biacore 8K and the Carterra LSA. SLAS Discovery, 25, 977-984. https://doi.org/10.1177/2472555220934814 |
[24] |
Schasfoort, R.B. (2017) Handbook of Surface Plasmon Resonance. Royal Society of Chemistry, London. |
[25] |
王晓骏. 磺胺类药物表面等离子共振免疫传感检测研究[D]: [硕士学位论文]. 天津: 天津科技大学, 2015. |
[26] |
Abdiche, Y.N., Malashock, D.S. and Pons, J. (2008) Probing the Binding Mechanism and Affinity of Tanezumab, a Recombinant Humanized Anti-NGF Monoclonal Antibody, Using a Repertoire of Biosensors. Protein Science, 17, 1326-1335. https://doi.org/10.1110/ps.035402.108 |